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Abstract

An environment for designing virtual instruments with 3D geometry has been prototyped and ap-

plied to real-time sound control and design. It enables a sound artist, musical performer or composer

to design an instrument according to preferred or required gestural and musical constraints instead

of constraints based only on physical laws as they apply to an instrument with a particular geome-

try. Sounds can be created, edited or performed in real-time by changing parameters like position,

orientation and shape of a virtual 3D input device. The virtual instrument can only be perceived

through a visualization and acoustic representation, or sonification, of the control surface. No haptic

representation is available.

This environment was implemented using CyberGloves, Polhemus sensors, an SGI Onyx and by

extending a real-time, visual programming language called Max/FTS, which was originally designed

for sound synthesis. The extension involves software objects that interface the sensors and software

objects that compute human movement and virtual object features. Two pilot studies have been

performed, involving virtual input devices with the behaviours of a rubber balloon and a rubber

sheet for the control of sound spatialization and timbre parameters.

Both manipulation and sonification methods affect the naturalness of the interaction. Informal

evaluation showed that a sonification inspired by the physical world appears natural and effective.

More research is required for a natural sonification of virtual input device features such as shape,

taking into account possible co-articulation of these features. While both hands can be used for

manipulation, left-hand-only interaction with a virtual instrument may be a useful replacement for

and extension of the standard keyboard modulation wheel. More research is needed to identify

and apply manipulation pragmatics and movement features, and to investigate how they are co-

articulated, in the mapping of virtual object parameters. While the virtual instruments can be

adapted to exploit many manipulation gestures, further work is required to reduce the need for

technical expertise to realize adaptations. Better virtual object simulation techniques and faster

sensor data acquisition will improve the performance of virtual instruments.

The design environment which has been developed should prove useful as a (musical) instrument

prototyping tool and as a tool for researching the optimal adaptation of machines to humans.
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Chapter 1

Introduction

Most people assume that learning to play a musical instrument requires a commitment for

many years to develop the motor skills necessary to elicit the desired sounds as well as to

develop an intuition and understanding of the musical structures and idiom of the musical

style of interest.

The research presented in this dissertation is concerned with identifying ways to turn

part of the above assumption around: allowing musical instruments to be adapted to the

motor skills a performer already may have, may prefer or may be limited to. This approach

to the relation between performer and instrument should lead to a greater freedom for the

performer to choose and develop a personal gestural “vocabulary” and, if the performer can

already express these gestures skillfully, a shorter time to musical performance proficiency.

The realization of this approach has been hindered by the physical implementation

of current musical instruments, whether they are acoustic or electronic. Changes in the

layout of keys, valves and sliders of these instruments cannot be brought about easily by a

performer. In the case of acoustic instruments, such changes are also limited by the sound

generating principles around which the instrument is designed.

Electronic musical instruments enabled the separation of the control surface (e.g. keys,

sliders, valves etc.) from the sound generating device (e.g. speakers). This separation

lead to the development of a plethora of “alternate controllers” like the Theremin and the

Dataglove. The latter “hands-free” controllers do not physically restrict hand motion in

any way and hence allow for the implementation of imaginary or virtual control surfaces of

almost unlimited size and of any type of shape.

While this opened up the use of formalized gestures used in sign languages as well as less

3



CHAPTER 1. INTRODUCTION 4

formalized gestures often called gesticulation for the control of sound, such gestures, as they

are intended for conveying structured symbolic information, are best applied during musical

tasks for the control of musical structures, as can be seen in conducting. Where it concerns

the control of sound represented as a multidimensional space of continuous parameters such

as in many synthesis models, manipulation gestures applied to a visually represented control

surface appear more appropriate because these gestures are intended for controlling multiple

continuous variables.

However, the constraints, if any, on the control surface of these “hands-free” controllers

do not facilitate a visualization of the control surface in terms of familiar physical object

features. Generally speaking, to make virtual control surfaces visualizable it is necessary to

maintain a level of continuity from the physical world.

This limitation lead to the notion of a Virtual Musical Instrument (VMI) - a musical

instrument without a physical control surface, but instead a virtual control surface that is

inspired more or less by the physical world. It is the virtual control surface, not any physical

device or sensor that is the focus of attention for any performer. As a VMI is entirely defined

by software any changes to the control surface are a matter of programming, which is in

many cases much easier and forgiving than changing hardware components.

This dissertation presents a design environment for modifying and creating VMIs that

use a sculpting metaphor in its literal sense. Thus, the interaction with these VMIs during

performance, in composing or for sound design is called sound sculpting.

Dissertation Outline

Chapter 2, drawing from work in music, engineering and ergonomics identifies in detail

(in)compatibility issues between performer and instrument. Chapter 3 subsequently carves

out a path to close the gap between the two: what boundary conditions for the system design

can be defined based on human behaviour, human perception and engineering experience ?

It is in chapter 4 that we get down to the details: how is the design environment actually

implemented and what VMI prototypes have been explored. Chapter 5 discusses the results

of this design experiment - the conclusion in chapter 6 places a summary of this evaluation

in the larger context of the fields drawn from in chapter 2, as well as outlines future work.

This dissertation is available on the world wide web [55]. For more information related

to this dissertation and for links to other publications by the author look up

http://www.cs.sfu.ca/∼amulder/personal/vmi.



Chapter 2

Performer and Instrument

intent

motor 
system

auditory
sense

sound generation

musical instrument

performer

vision

control surface

processing

central nervous system

visuali-
sation

intent

motor 
system

auditory 
sense

audience

vision

central
nervous
system

proprio-
ception

sensors actuators

Figure 2.1: A model of musical performance.

2.1 Analysis of Performer and Instrument

Drawing from Pressing [71], a simple model of the interaction during musical performance

between performer and instrument that results in audible effects perceived by an audience is

5



CHAPTER 2. PERFORMER AND INSTRUMENT 6

given in figure 2.1. Visual and proprioceptive feedback (tactile and force feedback) and com-

munication are included. For the sake of giving humans credit for being so unpredictable,

intent is indicated. The fact that musical performance can be represented in different ways

must be taken into account when modeling musical performance. Reference to an auditory

process as “hearing”, for instance, implies a different representation than does reference

to the same process as “listening”. Similarly with respect to the motor system, the terms

“moving” and “gesturing” reflect different representations of the performance process. Two

performance forms, conducting and instrumental performance represent the two extremes in

terms of abstraction. The performance form of conducting, i.e. the control of musical struc-

tures, is often described in terms of symbolically structured gesturing, while instrumental

performance, i.e. the control and processing of sounds through the manipulation of physical

materials, is often described in terms of simultaneous continuous motions of multiple limbs.

2.1.1 Defining Gesture

The word gesture has been used in place of posture and vice versa. The tendency however,

is to see gesture as dynamic and posture as static. The notion of a musical gesture that

at the time it occurs involves no actual human movement but merely refers to it is quite

common. Obviously, musical expression is intimately connected with human movement,

hence the existence of such an idiom. In the following, a hand gesture and hand movement

are both defined as the motions of fingers, hands and arms. Hand posture is defined as the

position of the hand and fingers at one instant in time. However, hand posture and gesture

describe situations where hands are used as a means to communicate to either machine or

human. Empty-handed gestures and free-hand gestures are generally used to indicate use

of the hands for communication purposes without physical manipulation of an object.

2.1.2 Defining Control Surface

The control surface, when visualized, is a physical or virtual surface that, when (virtual)

forces are applied with body parts like the hands, identifies all the human movements the

instrument responds to. In more practical terms, it consists of sensors for human movement

capture, actuators for tactile as well as force feedback yielding a haptic representation and

last but not least a visual representation. The control surface outputs data that represents

the movements and gestures. These data are turned into sound variations after processing.
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The control surface may change shape, position or orientation as a result of the application

of these forces. For example, the control surface can be such that it requires a set of touching

movements such as used for piano playing or constrained reaching movements such as used

in Theremin performance (see section 2.2.2). Note that, as in the case of the Theremin, the

control surface visualization may not be visible either as physical matter or virtually, on a

graphical display. Also, as is the case with the Theremin, the visualization of the control

surface does not need to be identical to the visual representation of the musical instrument.

In the case of conducting, the visual representation of the instrument would be the orchestra

or ensemble, which representation is very different from the control surface. In conducting,

the control surface is very difficult, perhaps impossible to visualize.

2.1.3 Performer-Instrument Compatibility

Due to the configuration of the control surface, currently available musical instruments

require the learning of specific gestures and movements that are not necessarily compatible

with the preferences and/or capabilities of the performer. Moore defined compatibility

between performer and instrument as “control intimacy”: “Control intimacy determines

the match between the variety of musically desirable sounds produced and the psycho-

physiological capabilities of a practiced performer” [53].

Research to improve this compatibility has resulted in many new musical instrument

designs, many of which make use of alternate means of controlling sound production -

alternate controllers - to connect forms of bodily expression to the creation of sound and

music in innovative ways. There are however two shortcomings common to all traditional

and new musical instruments:

• Inflexibility - Due to age and/or bodily traumas the physical and/or motor control

ability of the performer may change, or his or her gestural vocabulary may change due

to personal interests, social influences and cultural trends. Unless the instrument can

be adapted (and the technical expertise to do so is available), accommodation of these

changes necessitates switching to another instrument. Acquired motor skills may be

lost in the transition, while new learning or familiarization will need to take place.

The capability of currently available musical instruments to adapt to these types of

changes can be greatly expanded [2].
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• Standardization - Most musical instruments are built for persons with demograph-

ically normal limb proportions and functionality. The availability of different sizes of

the violin is an exception that confirms the rule. The capability of musical instru-

ments to accommodate persons with limb proportions and/or functionality outside

the norm is relatively undeveloped. It is safe to say that many musical instrument

designs do not fully exploit the particular or preferred capabilities of the performer,

so that persons whose skills are outside the norm need more time to learn to play a

given instrument if they are able to play it at all.

It follows that there is a need for musical instruments with gestural interfaces that

can adapt by themselves, through “learning” capabilities, or be adapted by the performer,

without specific technical expertise, to the gestures and movements of the performer.

2.1.4 Human Factors Context and Gestural Communication Context

Human factors research addresses subjects like ergonomy, human interfacing, human-machine

communication, human computer interaction, motor control, etc. Gestural communication

research addresses subjects like sign language, non-verbal communication, etc. Human

factors researchers have studied the compatibility between performer and instrument as

interface “naturalness” [65] leading to “transparency” of the interface. Interface aspects

that constitute naturalness are understood to be consistency of the interface (in terms of

its method of operation and appearance) and adaptability (either autonomously by the

instrument or by the user) of the interface to the user’s preferences [84]. For multidimen-

sional control tasks it has been shown that the separability (or integrality) of the dominant

perceptual structure of the task, i.e. whether a user will use dimensions separately and se-

quentially to reach an endpoint in control space, should be reflected by the input device [32].

The research on performer instrument compatibility performed in this context has generally

aimed at improving the usability of the interface [93], [94], for which estimation Shackel [81]

provides four criteria: user learning, ease-of-use, system flexibility and user attitude. The

focus of research performed in this context is on finding a new control surface configuration

or control method that reduces the motor and cognitive load applicable to either specific

groups or all humans, usually by generalizing from experimental research.



CHAPTER 2. PERFORMER AND INSTRUMENT 9

2.1.5 Music and Performing Arts Context

The research performed in the context of music and performing arts has generally viewed

compatibility between performer and instrument from the point of view of the listener, fo-

cusing first on the sounds to create the artistic image that needed to be projected onto the

audience and then on suitable and possible gestural control strategies. Due to the unique-

ness of any artistic piece much of the work on alternate controllers resulted in highly unique

and idiosyncratic controllers. The notion of “effort” ([48] and later amongst others [79]),

deemed by some to arise from a level of performance uncertainty [75], contrasts with the

goal of human factors researchers to increase the “ease-of-use”. It has been suggested that

increasing the “ease-of-use” leads to a loss of expressive power because less effort is required

to perform easier, i.e. less refined, motions [95]. As such, from an artist point of view,

increasing the “ease-of-use” has no value other than changing the performance boundary

defined by the gestural and musical constraints of the instrument. Many artists strongly

believe that it is impossible to perform original sound material and to convey a sense of the

performer’s emotions, without the effort necessary for challenging the performance bound-

ary, regardless of where it may be [40], [33]. However, each performer may have preferences

as to the precise definition of the performance boundary, so as to convey a more personal

artistic statement. This observation lead to the development of musical instruments adapted

to the individual performer, with a performance boundary often uniquely challenging to that

performer [105], [110], [46], [108].

2.2 Review of Related Research

Given the different goals of research carried out within the two clusters of fields outlined

above, research to improve the compatibility between performer and instrument focused on

either or both of the following topics:

• Gestural Range - Some research aims to expand the gestural range of existing in-

struments, to exploit unconventional gestures or movements or unused aspects of con-

ventional gestures, so that the range of adaptation can be expanded, despite the fact

that it would still be limited due to physical laws.

• Adaptability - Some research aims to find specific methods to make the musical

instrument as easily adaptable (performer implements change) or adaptive (instrument
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implements change) as possible.

This research has resulted in the development of a wealth of alternate controllers [67],

[72], [30], [61], [8], [92], either completely new or extrapolated from traditional musical

instruments (e.g. hyperinstruments [46]). To realize larger and larger gestural ranges,

alternate controllers have evolved from those requiring contact with some physical surface

fixed in space to those without almost any such physical contact requirements. In the latter

case the implementation of a suitable haptic representation is very difficult. Unfortunately

the integration of various different controllers is often hindered by physical form and size

as well as MIDI protocol limitations. The I-Cube System (figure 2.2), a modular, user-

configurable sensing environment [103], was inspired by this approach. However, its coverage

of the human gestural range is incomplete as yet. Also, users are required to physically

assemble a controller matching their needs, which often requires significant engineering

skills.

Figure 2.2: The I-Cube System Digitizer and a few sensors. Courtesy Infusion Systems Ltd.
[103].

To provide an insight in the range of research carried out, in the following a variety of

controllers will be discussed, varying from touch controllers, to expanded range controllers,

to immersive controllers which impose few or no restrictions to movement but provide no

suitable haptic feedback as yet. Immersive controllers are subdivided in three different

types: internal, external and symbolic controllers.
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2.2.1 Touch Controllers

Most alternate controllers that expand the gestural range still require the performer to touch

a physical control surface, usually fixed in space but sometimes carried around. Although

any of these controllers can be adapted to meet the specific gestural needs or preferences of

an individual performer, such adaptation is limited by the particular physical construction

of the controller. Adaptation beyond these limits requires not only very specific technical

knowledge, but is usually also time consuming. An important advantage of touch controllers

is their ability to provide a haptic representation.

aXiO

A typical example of an alternative controller requiring physical contact is the aXiO (figure

2.3), an ergonomic physical control surface consisting of knobs, sliders and buttons [16]. De-

spite the fact that it was developed within a human factors context and could be designated

an ergonomic controller, the ergonomic features are only evident given a specific gestural

“vocabulary” and posture. Also, any adaptation of this controller would be technically

challenging and time consuming.

2.2.2 Expanded Range Controllers

These controllers may require physical contact in only a limited form, or may not require

physical contact but have a limited range of effective gestures. Despite their expanded

gestural range compared to touch controllers, the performer can always “escape” the control

surface and make movements without musical consequence. The haptic representation of

these controllers is reduced or even absent due to less physical contact.

The “Hands”

At STEIM in the Netherlands a number of alternate controllers amongst others the “Hands”

(figure 2.4) were developed [3]. The “Hands” allow the hands to move almost freely in space

- finger motions are restricted to button press motions. Only distance between the hands

is sensed ultrasonically. Also, no visualization of the control surface was implemented.

Therefore it is a hybrid of a controller like the Theremin (see section 2.2.2) and alternate

controllers requiring physical contact like the aXiO.
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Figure 2.3: The aXiO. Courtesy Brad Cariou [16].

Lightning

Buchla’s Lightningtm involves a hand-held unit which tracks hand motion in a two-dimensional

vertical plane through infra-red light scanning. The hand motions are subsequently repre-

sented as MIDI signals and available for control of sounds [104]. Due to the fact that the

hands need to hold the infrared transmitting unit hand shape variations are restricted. It is

comparable to the “Hands” in this analysis. Given these limitations, Lee [44] applied neural

networks to implement an adaptable mapping of conducting gestures to musical parameters.

Radio Drum

Mathews and Boie’s Radio Drum (figure 2.5) [49], involves two drum sticks with coils at the

far ends that each emit an electrostatic field with different frequency. Both fields are picked

up by four electrodes placed in a horizontal plane beneath the sticks. The 3D position of

each stick end can be measured as the detected signals vary correspondingly. Again, hand

shape could not be used for performance control, while no visualization was provided of the
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control surface [80], [33].

Figure 2.4: The “Hands”. Courtesy Michel Waisvisz [111].

Figure 2.5: The Radio Drum. Courtesy William Putnam and R. Benjamin Knapp. [76].

Theremin and Dimension Beam

The Theremin (figure 2.6a) is a well-known alternate controller [19], [50]. The Theremin

uses two antennas to detect human body mass within a certain range of proximity, which

results in the production of only two control signals traditionally used for pitch and volume.

Gestures are effective only within the range of the sensing field, while the control surface

does not exploit the full dexterity of the hands, because the gestural expression is reduced

to only two variables. The electric field technology used for the Theremin has been used



CHAPTER 2. PERFORMER AND INSTRUMENT 14

in various other controller designs [68], [96], including a method to extract a more detailed

hand geometry [86]. Using infrared tracking within an egg-like sensing field yielding one

dimension of control, the Dimension Beamtm (figure 2.6b) [102] has similar limitations as

the Theremin.

(a) A Theremin - the right antenna con-
trols pitch, the left antenna controls vol-
ume. Courtesy Jason B. Barile [109].

(b) The sensing field of the Dimension

Beamtm. Courtesy Interactive Light
Inc. [102].

Figure 2.6: The Theremin and the Dimension Beamtm.

2.2.3 Immersive Controllers

The alternate controllers with few or no restrictions to the movements are best suitable for

adaptation to the specific gestural capabilities and needs of a performer. They often rely

on the use of a Dataglove (figure 2.7) or Datasuit to track (nearly) all human movements
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of interest so that the feeling of immersion is created - the performer is at all times in the

sensing field [60]. For immersive controllers, touch feedback and/or force feedback can only

be provided in very limited form, if at all, with current technology [29], [6], [82], [83]. These

types of feedback are generally deemed necessary to achieve a reasonable timing accuracy as

well as a higher level of refinement in the motions. The bandwidth of such feedback enables

control of timing within a few milliseconds, matching perceptual capabilities for detecting

timing differences [17].

(a) Drawing of the Dataglove, as originally made
by VPL. Courtesy IEEE [54].

(b) The

CyberGlovetm.
Courtesy Virtual
Technologies [101].

Figure 2.7: Examples of Datagloves.

Immersive controllers can be loosely grouped as follows:

• Internal Controllers - Controllers with a control surface the visualization of which

is the physical shape of the human body itself. Limb features like joint angles are

mapped in a one-to-one fashion to sound or music parameters.

• External Controllers - Controllers with a control surface the visualization of which

is so different from the physical shape of the human body that it can be visualized

by the performer as separate from his or her own body, although the visualization
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may be impossible to implement as a physical shape. Limb features may be complex

(e.g. derived features like distance between two finger tips) and/or these features are

mapped in a complex (e.g. non-linear or many-to-one) way to sound and/or music

parameters.

• Symbolic Controllers - Controllers with a control surface that is, due to its com-

plexity, (almost) impossible to visualize or can only partially be visualized and which

requires formalized gesture sets like sign language and forms of gesticulation such as

used in conducting to operate. Gestural patterns are mapped to structural aspects of

the music.

Atari 1040 ST
computerA/D converter

Lexicon LXP5 
effects processor

MIDI

mike
8 flex sensors

multiplexer

MIDI mapping 
software

Figure 2.8: Functional diagram of the bodysuit system.

Internal Controllers

The following describes a preliminary design experiment for the work described in this

dissertation. To experiment with controlling sound effects through whole body movements, a

tightly fitting garment intended for use by dancers was made [58]. The bodysuit incorporated

eight sensors to capture wrist flexion, elbow flexion, shoulder flexion and knee flexion which

were mapped to MIDI messages controlling a sound effects device processing the voice of

the performer (figure 2.8). This controller did not impose any restrictions on the gestural

range, but did not capture all aspects of the movements either, so that effective gestures were

somewhat limited. Nevertheless, immersion was achieved in the sense that the performer
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felt most movements had an effect. The control surface was the performer’s body, each

joint controlling a synthesis parameter like a slider on a synthesis control panel. This

mapping appeared to be very difficult to learn. First of all, human movements often involve

the simultaneous movement of multiple limbs. So, when the intent was to change one or

more specific parameter(s), often other synthesis parameters were co-articulated, i.e. also

changed unintentionally. Perhaps more importantly, the mapping did not encourage use

of any familiar movements like manipulation gestures or simple symbolic gestures or signs.

Instead, the performer was required to learn to move single joints only. An easier way to

deploy this control surface would seem to be to have another performer move the bodysuit

wearer’s body through manipulation gestures.

The Biomuse [38] implements a relation between muscle tension and musical sound by

capturing myo-electric voltages off the human skin with EMG electrodes. The dimension-

ality of the control surface is dependent on the number of EMG electrodes used. When

sufficient electrodes are used this approach results in an immersive controller. The con-

troller requires the performer to focus attention on the tension in the sensed muscles [90],

unless a control surface would be designed that can be visualized with a different shape

than the performer’s body. Otherwise, as with the musical bodysuit, the control surface is

(a part of) the performer’s body and the control surface would seem to be easier to learn

if another performer would move the Biomuse wearer’s body (the Biomuse wearer will have

to resist movement to create muscle tension).

External Controllers

Hartono et al [27] mapped movement parameters captured by a Dataglove to a multi dimen-

sional sound parameter space using neural networks. An adaptation was implemented using

active learning capabilities of the neural networks. This method alleviated the common

problem of requiring the user to provide the entire gesture - sound data set each time a part

of the mapping is changed or expanded. Although the instrument could be adapted almost

entirely to the needs of the performer, no control surfaces were implemented requiring that a

performer had to start from scratch designing a control surface. No visualizations of control

surfaces were provided, so that gestures were limited to simple manipulation gestures or

spatial trajectories.

Fels [21], in his implementation of a gesture to speech system (figure 2.9) used neural

network technology and a variety of movement tracking technologies, including a Dataglove.
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Figure 2.9: Functional diagram of the GloveTalk II system. Courtesy Sidney Fels [21].

The neural networks were used to enable the implementation of a specific, non-linear map-

ping that enabled the production of speech through hand gestures. The mapping could

be learned to an acceptable level in about 100 hours, perhaps because the control surface

enabled the use of familiar manipulation-like gestures and simple spatial trajectories, yet

was not easily visualized. A graphical display of the sound generating mechanisms of speech

would most likely confure rather than facilitate control because the gestures such a visualiza-

tion provides do not correspond with the gestures defined by the control surface. However, a

graphically displayed visualization of the control surface, clearly indicating how to gesture,

might have shortened the learning time.

Symbolic Controllers

The following describes another preliminary design experiment for the work described in this

dissertation. To experiment with symbolic controllers a Dataglove was used to implement a

drum set that could be operated by performing one of a predefined set of hand signs while

making a sudden motion with the wrist [58]. Figure 2.10 shows the functional diagram of the

application. Hand sign recognition was implemented by processing 10 values representing

the hand shape with a backpropagation neural network with one hidden layer of 15 nodes

and three outputs which allowed encoding of 7 different MIDI note-on pitch values. Each
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Figure 2.10: Functional diagram of the sign-drum.

note-on pitch value represented a percussive sound. Sounds could be assigned to gestures

according to the user’s preferences, but, as no active learning was implemented, the entire

set had to be specified each time a change was made to the set, which was time consuming.

The use of hand signs did not help to visualize a control surface for the various sounds. It

would seem that the use of a set of manipulation gestures used for a specific familiar shape

would have been a better choice - the variation in the set would have to correspond to the

variation of the sounds.

The Miburi (figure 2.11) [107] is a musical instrument that translates specific body

postures and gestures (measured with flex sensors attached to the body) and key presses

(through buttons attached to the hands) to triggers for musical sounds. The performer is

required to learn the specific postures and gestures, i.e. adaptability is limited to the set of

postures and gestures.

A virtual orchestra was implemented by Morita et al [54]. The system controlled an

electronic orchestra with a complex performance database through common conducting

gestures captured with a CCD camera and a Dataglove. Adaptation was possible though

required significant technical expertise. It is one of the more complete controllers involving

formalized gestures. Its success is based on the use of an existing gesture set for an existing

performance paradigm, i.e. conducting.
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Figure 2.11: The Yamaha Miburitm. Courtesy Yamaha Corp. [107].

2.3 Design of Gestural Constraints for Musicians

2.3.1 Current Methods

Physical and Sensing Limitations

As stated above adaptation of touch controllers, requiring contact with a physical control

surface that is fixed in space, to an individual performer’s range of gestures is currently

limited by the physical implementation of the musical instrument. Any adaptation beyond

these limits requires specialized technical expertise and is generally time consuming. The

idea of creating from scratch a gestural interface for a musical instrument based on the spe-

cific gestural and movement capabilities and needs of the performer seems rather far-fetched

due to these limitations and is only available to those performers with substantial technical

expertise or those affiliated with research institutes. Some controllers were designed with

fewer constraints resulting from physical contact and an expanded gestural capturing range,

but still limited or hindered hand movements considerably.
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Visualization of the Control Surface

Although with current technology a suitable haptic representation is very difficult to im-

plement for immersive controllers, they are capable of capturing the entire gestural range

with sufficient accuracy and resolution. Immersive controllers were subsequently used for

musical control tasks. However, in the case of internal controllers confusion arises as the

object acted upon is also the acting object. In the case of external controllers thus far the

visualization of the control surface has been (too) complex or the visualization was unavail-

able, making the use of manipulation gestures more difficult to learn and possibly limiting

the use of such gestures. While a skilled musician does not need to rely on a graphically

displayed control surface visualization, almost all musicians have learned to manipulate the

control surface of their instrument by studying the visual and haptic representation of the

control surface and its behaviour [85]. Hence it can be argued that, if manipulation gestures

are to be used, it should always be possible to visualize and/or imagine the haptic “feel”

of a control surface. If gestures other than manipulation are to be used a visualization

might not be necessary and symbolic controllers may be applicable. While the extraction of

symbolically structured information from formalized gestures like signing is still non-trivial

[59], symbolic controllers are thus far most successful in terms of deploying the maximum

gestural range while being maximally adaptable. But these controllers are not well-suited

for the simultaneous control of multi-dimensional continuous parameter spaces such as used

for the description of sound, because signing involves mainly selection and structuring of

discrete and discontinuous events represented as symbols [51].

Real World Continuity

If the need is to simultaneously control multiple continuous sound parameters, manipulation

gestures may be better suited than gestures for communication of symbol structures. But

the immersive controllers implemented thus far do not facilitate the use of manipulation

gestures. These gestures are much easier executed with respect to a visualization and

haptic representation of the control surface that is reminiscent of physical objects. What is

needed is the ability to create and adapt multidimensional control surfaces that are readily

visualizable and responsive to manipulation gestures. In other words, what is needed is the

ability to create and adapt multidimensional control surfaces that are not too different from

most shapes we handle in day-to-day life.
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2.3.2 Virtual Musical Instruments

The afore going reasoning leads to the following possible solution. The limitations imposed

by physics can be overcome by using sensor technology that tracks the entire hands such as

that used for immersive controllers and virtual environments. Then, in a virtual environment

musical instruments can be created that exist only as software. With good user interfaces, it

will be much easier for performers to program this software and design their own controller

than when faced with the requirement to assemble a controller from (modular) hardware

controller parts. All aspects of such a controller will be programmable and no constraints

will be imposed by acoustic or other physics principles and the performer will not be required

to hold physical components, so it will be maximally adaptable to the needs and capabilities

of an individual performer.

But in order to allow for the effective use of manipulation gestures and similar move-

ments, these instruments must provide a form of continuity with respect to the real world

with a readily visualizable control surface, including a suitable haptic representation. Thus,

the shapes or contours of these musical instruments should be copies of or inspired by the

physical shape or contours of objects in our day-to-day life, yet the mapping to sound pa-

rameters may be very different from acoustic instruments. Such musical instruments are

defined as Virtual Musical Instruments (VMI) [61].

In other words, and from the point of view of a human interacting with a computer, the

idea is to extend the user interface for musical and sound synthesis environments from a 2D

interface (or what is sometimes called 21
2D due to the presence of a 3D mouse represented

as a 2D pointer on a 2D screen) to a 3D interface where visual and haptic representation

and control space are superimposed.

Prior Art

A lot of work has been done on 21
2D virtual musical instruments, but very little on 3D vir-

tual musical instruments. This work has not aimed for a maximally adaptable or adaptive

instrument or an environment in which to design such instruments, but instead has focused

mostly on the creation of fixed virtual instantiations of familiar musical instruments like

drums [7], flutes [63], guitars and even a Theremin [7], with all the familiar limitations of

the control surface of the original instrument. In a very few cases researchers or artists
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like Lanier [43] have been able to develop their own variation of a VMI inspired on tradi-

tional musical instruments. Choi et al [18] developed a virtual environment in which 3D

spatial paths were visualized. Tracing these paths (a form of movement closely related to

manipulation gestures) resulted in sound variations. Similar to the work presented in this

dissertation, Modler [52] has recently implemented “behaving virtual musical objects”, sim-

ple 3D graphical objects with which the user can interact using 3D hand movements with

musical results.

2.3.3 Research Objectives

The goal of the work presented in the following chapters was to implement a prototyp-

ing environment for Virtual Musical Instruments, without haptic representation because of

technical limitations, and thereby to gain insight into the following areas:

• Manipulation - What kind of manipulation gestures would be used and what kind

of gestural analysis computations would need to be implemented ?

• Sonification - What recommendations can be made with respect to relating shape,

position and orientation variations to sound and music variations ?

• Visualization - How “real” should the control surface visualization appear and how

should it change in response to manipulation and other gestures by the performer ?

• Adaptation - How should the environment be implemented to enable a maximum of

adaptation of a VMI to/by any performer ?

• Engineering - What engineering feats in terms of sensing, computing and display

need to be accomplished in order to achieve real-time performance with a VMI ?
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VMI Design

Rubine has examined in some detail the performer’s sensori-motor and auditory percep-

tion capabilities so as to formulate requirements for musical instruments given engineering

constraints [78]. Similarly, following the discussion in the previous chapter, the question

arises of what should be the capabilities of a virtual musical instrument. Any treatise of

this subject will be necessarily incomplete, and it also does not fall within the scope of

this dissertation to achieve completeness. Hence, this chapter serves to outline a basis for

implementing a VMI design environment by discussing some of the known boundaries that

delimit the design space of virtual musical instruments without providing a classification

method for VMIs in the same way that Card et al has done for computer input devices [15]

and Nigay et al for multi-modal systems [64].

3.1 System Analysis

The aim is to build musical instruments that allow performers to start learning any given

(traditional or new) form of gesturing in a musical performance setting while they may later

prefer or need to incorporate other forms of gesturing.

3.1.1 Task Analysis

Music involves the simultaneous control of many parameters, the changes in which have to be

precisely timed in order for the music to be considered expressive and aesthetically pleasing.

The activities music composition and sound design are not constrained temporally. Normally

24
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a composition is first written out, after which a performance of the piece may occur. For

sound design, sound parameters may be adjusted after which the sound may be generated

for evaluation. Thus, based on Sturman [89], the task of performing and composing music

and designing sound can be characterized as follows:

• Degrees of freedom - Musical performance, composition and sound design involve

the control of many parameters. The precise number of degrees of freedom depends

on the type of musical activity. Traditionally they have been pitch, loudness, timbre

(which in itself can involve a few degrees of freedom), expression related parameters

like vibrato and musical structure related parameters like tempo, dynamics and meter.

This list has expanded considerably due to electronic sound synthesis and processing

techniques.

• Task constraints - The musical parameter changes, in some musical styles more so

than others, have to be timed down to milliseconds. Music composition and sound

design are not constrained temporally. Aesthetically, musical activities are highly

constrained, although it is a socio-culturally defined constraint. Instrumental perfor-

mance traditionally imposes a physical constraint as to how and where the performer

can move to achieve musical results. The aim of the research presented in this dis-

sertation is to let performers define this constraint according to their desires and/or

needs.

• Coordination - To compose or perform a musically expressive piece or design the

right sound, many parameter changes have to be coordinated. For example, in classical

music to indicate a climax a pitch increase is accompanied by an increase in loudness

decrease and an increase in vibrato. In sound design, envelope parameter changes

may have to be accompanied by changes in the spectrum of the sound. Instrumental

performance traditionally requires a high level of coordination. For example, in wind

instruments, the opening and closing of multiple valves has to occur at the same time

as changes in reed vibration. As the coordination of certain limbs may be more difficult

for certain performers than for others, the research presented in this dissertation may

lead to a reduction of the need for difficult forms of coordination.
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• Resolution - Resolution is dependent on human perception. Depending on the mu-

sical or sonic context, perception resolution may vary greatly. Given the right condi-

tions, pitch variations can be perceived as low as 2 cents and loudness variations as

lows as 0.25 dB. In terms of timing resolution, two clicks can be heard as separate

clicks when they are at least 2 ms apart [78].

• Speed - Music is a timed series of audible events. The audible events do not have to

be performed as fast as possible, but simply on time. For music composition or sound

design there is no speed requirement.

• Repeatability - The repeatability of musical performances is dependent on musical

style. For example in jazz music improvisations repeatability is low, while in classical

music repeatability is very high.

3.1.2 Requirements

Although the aim as stated above implies that VMIs should be able to respond to any

specific movement or gesture the performer desires it to respond to, the research can be

limited to hand movements. This limitation can be implemented without compromising the

objectives of the research significantly, while greatly reducing time and resources necessary

to complete the research.

Given the above considerations, the following requirements can be summarized for any

VMI:

• Manipulation - The performer has to be able to interact with the control surface

using common manipulation pragmatics.

• Sonification - Performer gestures affecting the control surface have to result in per-

ceptible changes of sound and music parameters.

• Visualization - The performer has to be able to visualize the control surface, i.e. the

control surface has to be similar to or inspired by real world objects.

• Adaptation - As many aspects of the controller as possible have to be adaptable/adaptive

through an easy-to-use programming interface.

• Sensing - As many hand movements and gestures as possible have to be captured.
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• Computing - The VMI has to compute within real-time, i.e. hand actions have to

correspond with visual and auditory changes without any perceptible time delays.

Only if the task is to design a sound or compose music, not to perform it, auditory

changes may be delayed, but visual changes should still be occurring in real-time in

order to be able to manipulate the virtual object effectively.

• Display - The control surface visualization has to be graphically or otherwise visually

displayed, whereas the sonification has to be audibly “displayed”.

3.2 The Performer

The requirements on manipulation warrant an excursion into the body of knowledge on

human gestural capabilities and behaviour. There are many excellent overviews of human

hand gestural capabilities and behaviour e.g. [34]. The human hand is the most dextrous

of the human limbs and has, at the anatomical level of description, 29 degrees of freedom

which are operated through 39 muscles.

3.2.1 Hand Movements

Human hand movements can be classified according to two categories:

• Prehension - MacKenzie et al define prehension as the application of functionally

effective forces by the hand to an object for a task given numerous constraints [47], i.e.

hand movements involving tactile and force feedback. Since prehension involves an

external object it always involves target oriented movements. In almost any prehensile

behaviour, opposition of some part of the hand to the rest of the hand is essential [31].

• Gesturing - This can take the forms of gesticulation and signing, amongst other

things. All forms of gesturing can involve tactile feedback (aside from skin stretching

due to movement) but very often do not. Similarly, they may involve target oriented

movements, but very often do not. Kendon defined gesticulation as idiosyncratic

spontaneous movements of the hands and arms during speech and signing as the use

of a set of gestures and postures for a full fledged linguistic communication system

[36]. Kendon observed that in going from gesticulation to language-like gestures to

pantomime to emblems to signing, gesticulation is the least structured as a language

and signing the most structured as a language.
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Musical Performance Movements

Musical instrument performance including sound mixing during live performance involves

prehension, as forces are applied by the fingers to valves, strings, keys or sliders with the

aim to control some aspect of the sound. In the case of string instruments, tactile and

force feedback in the form of string motions may inform the performer how to adjust his or

her finger positions to achieve the desired sounds. Cadoz differentiated excitation gestures

(initiating an acoustic event) from modulation gestures (changing an ongoing acoustic event)

[13]. This differentiation is useful in identifying the goal of the movements, but does not

identify which specific motions were performed. The instrumentalist’s movements may also

serve to convey a visible result of the performance to the audience.

Conductors use signing and some gesticulation to communicate instructions to the or-

chestra and/or choir. The conductor’s baton is an instrument to this purpose. The conduc-

tor’s signing and gesticulation also serve to communicate a visible result of the performance

to the audience.

Control Dimensionality

The highest number of control dimensions are provided by prehensile behaviour, such as

that used for changing object shape (i.e. sculpting) and other forms of object manipulation,

in which the shape, position and orientation of the hand is changing simultaneously. If no

tactile or force feedback is involved we can call such prehensile movements manipulation

gestures. Such gestures provide the highest dimensionality of control especially when two

hands are involved in the manipulation. If well designed, two-handed manipulation increases

both the directness and degree of manipulation of the interface [35], [10], thereby reducing

the motor and cognitive load.

Fewer control dimensions are provided by dynamic signs (hand shape is constant, but

hand position and/or orientation is changing) and the least by static signs, which are mainly

useful for selection tasks and the communication of symbolic information such as in sign

languages. The use of such gestures requires some form of gesture recognition. In previous

work on gesture interfaces (such as [22]), it has been noted that, since most humans do

not normally reproduce their gestures intended for conveying symbolic information very

precisely, natural gesture recognition is rarely sufficiently accurate due to classification errors

and segmentation ambiguity. Only when gestures are produced according to well-defined
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formalisms, such as in sign language, will automatic recognition have acceptable precision

and accuracy.

3.2.2 Pragmatics

Object manipulation can be defined as the grasping, holding and changing of position,

orientation and shape of an object. These actions normally occur within a certain spatial

region or workspace [69] and are preferably centered around the body of the performer [89].

Holding

The pragmatics of holding objects involves a number of specific grips [91]:

• Platform grip - While the hand is flat, the object is resting on the whole or part of

the palmar surface.

• Pinch grip - The object is held between at least two pads of the hand. Some of the

main pinch grips are:

– Thumb-finger grip - Also known as the precision grip, objects are held between

the thumb, in opposition, and one or more of the other fingers.

– Interdigital grip - Objects are held sideways between two fingers, without thumb

opposition.

– Digitopalmar grip - Objects are held between fingers and palmar surface.

– Whole hand grip - Also known as the power grip, objects are held by wrapping

the entire hand around the object.

Moving

The pragmatics for the application of position and orientation changes consists of two praxes.

One praxis consists of the usage of one of the grips identified above for holding objects

followed by a movement of the hand. The other praxis consists of applying force to the

object with some part of the hand without holding the object.
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Sculpting

An analysis of the methods employed by humans to edit shape with their hands, i.e. sculpt-

ing, leads to the identification of four different stereotypical methods [57]:

• Claying - The shape of objects made of material with low stiffness, like clay, is often

changed by placing the object on a supporting surface and applying forces with the

fingers of both hands.

• Carving - The shape of objects made of material with medium stiffness, like many

wood materials, are often changed by holding the object in one hand and applying

forces to the object using a tool like a knife or a file.

• Chiseling - The shape of objects made of material with high stiffness, like many

stone materials, are often changed by placing the object on a supporting surface and

applying forces to the object using a tool like a chisel held in one hand and a hammer

held in the other.

• Assembly - Using pre-shaped components, a new shape is created or an existing

shape is modified. One hand may be used for holding the object, while the other

hand(s) place a pre-shape component.

3.3 The Instrument

3.3.1 Sensors and Display

There are many sensors for capturing hand movements, but only a few capture most degrees

of freedom and even fewer capture these with a minimum of time delays and inaccuracies

[60]. Instrumented gloves, or Datagloves, are most frequently used to achieve immersion

with respect to the hand. Currently available Datagloves are rather cumbersome to put

on and off as well as inconveniently tethered to an interface. Visual and auditory display

should provide no significant engineering problems, as the technology is readily available.
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3.3.2 Intelligent Computing

To implement a mapping, some form of intelligence is required in the form of mapping

functions and methods, and adaptation techniques. For example, many movement parame-

ters can be mapped to one sound parameter through a summing function or one movement

parameter can be mapped to many sound parameters through a variety of functions [77].

Sturman distinguishes between “direct” (hand motions result in kinematically similar mo-

tions of the controlled device), “mapped” (hand motions are interpreted abstractly, e.g.

finger flexion as a slider or a specific posture as a button click) and “symbolic” (gestures

and postures are interpreted as streams of tokens for sign-like language communication)

[89]. Also, both sound and human movement can be represented at various abstraction

levels [14]. Although it is hard to identify sharp boundaries between levels of abstractions,

a mapping may be faster to learn when movement features are mapped to sound features

of the same abstraction level.

This intelligence may consist of implicit and/or explicit knowledge. Explicit knowledge

requires the user to know and specify to the instrument how parameters should be mapped.

Implicit knowledge requires the instrument to deduce from examples to know how param-

eters should be mapped. Implicit knowledge can be implemented with neural networks,

which require that the user “teach” the system which hand movements it should map to the

sound parameters of interest [21].

Whether the mapping is implicit or explicit, an intelligent system can be adapted to the

user’s preferences. The implicit method does not provide any guidelines when designing a

mapping, which may be an advantage in situations where the user already has an idea of

how a sound should change when making a movement but a disadvantage in other situations

where guidelines for the design of a mapping are desired or when presets needed. In the latter

case explicitly provided knowledge may be useful, although the user interface to configure

the VMI may require more design work to achieve the same ease-of-use as in the case of

an implicit mapping which would not require the user to specify as much detail. Visual

programming interfaces like Max [106] may provide an easy to use method to reconfigure

or adjust the VMI.
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3.3.3 Real-time Computing

Music performance requires “real-time” operation of the instrument. Although humans can

hear timing differences between click sounds as low as 2 ms, full perception of complex

sounds can take as much as 60 ms. Thus, depending on the aspect of the sound or music

that is being controlled “real-time” translates into a time delay created by the instrument

that, to be imperceptible, may have to be in the order of milliseconds. However, it should be

noted that when a click sound is generated through a movement, the knowledge of the time

when the click should be heard must rely on a perceptual system with a high bandwidth

like the tactile sense. Otherwise such timing precision cannot be achieved and hence not

known. Therefore, unless tactile or force feedback is implemented, it is safe to assume that

“real-time” can be achieved within the order of 10 ms. Visual perception takes at least 100

ms up to about 200 ms, so that “real-time” here means a maximum time delay of 200 ms.

3.3.4 Sonification

Sonification has been defined as the use of data to control a sound generator for the purpose

of monitoring and analysis of the data [39]. Sonification in the context of this dissertation

concerns the use of virtual object features as sound and music controls. Sonification is very

new as a field and applicable research is extremely sparse [39]. Guidelines for sonification

are especially useful considering that computer controlled electronic sound synthesis has

given rise to an enormous increase in the number of parameters available to represent sound

and music, so that the possibilities for mapping are endless. As a starting point, from

a composer’s point of view a need for methods to organize these parameters in musically

meaningful ways has been recognized [20], [80]. To facilitate the use of such organizations

a variety of methods have been developed to visualize sound and music, usually through a

2D or 3D projection on a 2D screen. These methods may inspire the design of VMIs as

they provide a way of interacting with sound and music composition environments through

a visual interface.

Visualizations of sound often consist of a time-frequency-amplitude graph if 3D (pro-

jected) display is available. Some have experimented with such visualizations on a 3D

interactive display [5], [1]. These visualizations may require 3D input but they have not

exploited the dexterity of the whole hand. In 2D visualizations time-amplitude or frequency-

amplitude (or spectral) graphs are often used, although other variables are also used [62].
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Sometimes sound is visualized as the shape of a physically modeled vibrating object [11].

In all these cases, thusfar the gestural controls made available to the user are limited due

to the use of keyboard and mouse interfaces.

Visualizations of musical structure traditionally consists of classical sheet music nota-

tions displaying the acoustic events over time. Some have tried alternative forms of display-

ing the musical flow [37], [26], related pitch sequences to colour [25], [28] or transformed

entire musical compositions into one painting [66]. All these visualizations were developed

solely for visual aesthetic purposes, not for providing a method to control or create music.

Data flow software programs such as Max [106], patchwork [4], synthbuilder [70] etc. pro-

vide an algorithmic visualization where the musical or sound generating process is visualized

through graphical boxes or otherwise shaped objects. All these visualizations are limited

due to the use of keyboard and mouse interfaces.



Chapter 4

VMI Implementation

An environment for developing virtual instruments for the control of spatial and timbral

sound parameters was created based on the pragmatics of sculpting [58], [56]. In this

environment a 3D virtual object, as a visualization of the control surface, is used as input

device for the editing of sound - the sound artist literally “sculpts” sounds using a 3D

virtual sculpting computer interface [24], of which early 2D precursors can be found in

Krueger’s work [41]. Thus, by changing virtual object parameters such as shape, position

and orientation sound and music parameters are changed in real-time. In this environment

the object is virtual, i.e. the object can only be perceived through its graphics display and

acoustic representations, and has no tactile representation.

Although sculpting in the physical world is most effective with touch and force feedback,

it was assumed that these forms of feedback can be replaced by acoustic and visual feedback

with some compromises. The motivation to make such assumptions is based on the fact that

the generation of appropriate 3D touch and force feedback, while exploiting the maximum

gestural capability in terms of range of motion and dexterity, is currently technically too

challenging in a 3D virtual object manipulation task.

Furthermore, although the aim is to make musical instruments, it can be argued that

when no control is provided for note onset, duration and pitch, the performer is not mak-

ing music but controlling sound. Traditionally the difference between music and sound is

determined by the presence or absence of structure indicating the passage of time, using

these parameters. However, in the present times many composers create pieces that would

not traditionally be considered music because the structuring parameters are not limited

to note onset, duration and pitch but may for instance only be timbral and spatialization

34
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parameters. In the following the definition of a VMI should be interpreted in this context.

4.1 Environment

Cyberglove interface

Cyberglove interface

Polhemus interface

Polhemus interface

SGI Onyx R10K 
with ASO

Max/FTS

OpenInventor

MIDI interfaceFootpedal

Figure 4.1: Devices used for the VMI environment. The dotted lines represent a 3D virtual
surface which the sound/music composer or performer manipulates.

Figure 4.1 illustrates the devices used for the environment.

4.1.1 Sensors

Two Virtual Technologies CyberGlovestm (instrumented gloves that measure hand shape, see

figure 2.8) and Polhemus Fastraktm sensors (a sensor for measuring position and orientation

of a physical object, such as the human hand, relative to a fixed point) were used to capture

hand movements [60]. The sensors were interfaced at 38.4 KBaud. A footswitch, interfaced

using MIDI (31.25 KBaud), enabled “grabbing and holding” the virtual object.
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4.1.2 Computing Platform

All computations were performed on an SGI Onyx with 4 R10000 processors and audio/serial

option (6 serial ports) to interface the sensors and connect with a MIDI interface. The

MIDI interface was not used to send messages to a sound synthesizer as the software syn-

thesizer provided by Max/FTS (see below) was used. Instead the MIDI interface allowed

the interfacing of a footpedal. To facilitate quick prototyping and experimentation with a

multitude of gestural analysis methods, a set of software objects were created that facilitate

the computation of various gesture features and parameters similar to Wexelblatt’s gestural

analysis environment [99]. To implement this, a visual, interactive programming environ-

ment for real-time sound synthesis and algorithmic music composition called Max/FTS was

used [73], [74]. Max/FTS consists of two software programs and was chosen because FTS

provided a software development platform, while Max provided an appropriate user inter-

face. FTS is designed for real-time computation and has built in software sound synthesis

tools without requiring special sound cards. Max has visual programming capabilities and

includes various synthesis models implemented as editable patches. FTS functionality is

extended by linking in at run-time dynamic shared objects (DSO), containing the code for

new software objects.

4.1.3 Display

The hands and virtual object were graphically displayed (2D projections of 3D models) using

OpenInventor software. After trials with line drawings of the virtual objects it was found

that fully rendered graphical models provide much clearer information about the status of

the virtual object. Sound was either amplified through a pair of speakers or through a

headphone.

4.2 Computations

4.2.1 Method

The mapping relied on the use of virtual object parameters to relate manipulation gestures

to spatialization and timbral variations of the sound at various levels of abstraction (figures

4.2 and 4.3). Hand features, computed from the acquired hand shape, hand position and

hand orientation data, are mapped to virtual object parameters of a similar abstraction level.
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multiple abstraction 
level mapping

multiple abstraction 
level mapping

virtual object processing and feature computation

hand movement acquisition and feature computation

parameterized sound synthesis

Index tip 
position

balloon top 
position

average finger 
curvature

balloon 
"roundness"

center of mass
L/R position

panning

balloon 
"roundness"

brightness

Figure 4.2: Functional diagram of hand movement to sound mapping. Virtual object features
are used as a means to relate hand movement features to sound features.

If a virtual object parameter is specified at a different abstraction level than the parameters

of the virtual object processor, it will need to be translated to the parameter space of the

virtual object processor. A virtual object processor is an algorithm that computes surface

data points from virtual object parameter values. The simplest virtual object processor is

the identity, i.e. it takes surface data points as virtual object parameters and outputs surface

data points describing the same surface. If the hand feature computation and virtual object

parameter translation are also taken as the identity, the 3D positions that represent the hand

will also specify the virtual object surface. In other words, the hands are then continuously

“touching” the virtual object. A virtual object feature is computed from surface data points

and represents an abstraction of the virtual object (e.g. surface curvature). Virtual object

features are subsequently computed and mapped to sound parameters.

Examples

In terms of relating the parameters of a virtual object to sound, a mapping based on the

real, physical world may be easy to understand, but will not easily provide suggestions for

the control of abstract, higher level sound parameters. Nevertheless, if the object were

taken as a sound radiating object, a simplified mapping of the virtual object’s position

and orientation to sound parameters could involve mapping left/right position to panning,

front/back or depth position to reverberation level, angle of the object’s main axis with

respect to the vertical axis to reverberation time and virtual object volume to loudness.



CHAPTER 4. VMI IMPLEMENTATION 38

device data bytes

cyberglove and polhemus 
sensor values

hand limb position data 

map to virtual object, 
e.g. average finger curvature 
to "roundness"

serial port bytes

character device driver

serial port

sensor protocol handler

hand geometry computation

hand feature computation

sensor input

(a) Functional diagram of
hand movement acquisition
and feature computation.

map from hand movement,
e.g. average finger curvature
to "roundness"

surface data points

map to sound, e.g. 
"roundness"
to brightness

spline control points

virtual object parameter translator

virtual object processor

virtual object feature computer

(b) Functional diagram of vir-
tual object processing and fea-
ture computation.

map from virtual object
e.g "roundness"
 to brightness

[sound sample] 

sound sample data

filter settings

sound parameter translator

sound processor

D/A converter

audio out

(c) Functional diagram of
sound synthesis.

Figure 4.3: The diagrams show mapping at the feature abstraction level, but mapping at other
levels is equally possible.

Mapping virtual object shape parameters to timbral parameters is less easily based on

the physical world, but could involve mapping the length of the main, i.e. longest, axis to

flange amplitude, transverse surface area or object width to chorus depth and curvature or

“roundness” to brightness as defined by Wessel [98].

4.2.2 Implementation

The strong data type checking of Max/FTS was used to introduce new data types such as

position and orientation for geometric and kinematic computations as well as a voxel and

hand data type. This way the user is made aware of different abstraction levels or methods

of representation which do not necessarily map linearly but may require more complicated

functionality.

Based on the mapping method and the new data types, a number of Max/FTS software

objects were programmed enabling quick and easy prototyping of various gestural analysis

computations and allowing for application of the computations to different body parts. They

are listed below with reference to figures 4.2 and 4.3. See the Max/FTS object reference

appendix for a more detailed description.
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• Unix character device drivers - Objects for interfacing peripheral devices that

communicate using one of the SGI’s serial ports (serial), and for communication

between Max and other processes using TCP sockets (client) or shared memory with

semaphores (sms and smr). The sms object was used to communicate data to an

OpenInventor 3D graphics server to display the acquired hand shape, hand position

and hand orientation data as a graphic hand as well as to display the virtual object

graphically. The sms and smr objects also enabled real-time performance because

they allowed for rapid data exchange between two Max/FTS applications, one for

sound synthesis and the other for remaining computations. It was found that TCP

communication was too slow to enable real-time performance.

• Sensor interfaces - These objects are peripheral (character) device interfaces that

implement a specific protocol, such as for the CyberGlove and Polhemus sensors

(cyberglove and polhemus).

• Geometric computation - New data types position (x, y and z position as floats

in one data structure) and orientation (a data structure containing a rotation matrix,

Euler angles and angle-axis representations of orientation) were defined for this group

of objects to facilitate computations such as distance between points (+P , −P ), scaling

(∗P ), dot product (dotP ), cross product (crossP ), norm (normP ), magnitude (‖P ),

rotation (O ∗P and ∗O), frame of reference switching (TO) etc. and their derivatives

(see figure 4.4).

• Geometric structure computation - At this level of abstraction the computations

do not involve just points with a position and an orientation but involve volume

elements (represented as a new data type voxel). Voxels may be ordered and linked

in a specific manner so as to represent for instance human anatomical structures

or otherwise shaped objects. A new data type hand is used to represent a human

hand. The object geoHand computes an ordered list of voxels, packed as a hand that

are relative to the Polhemus transmitter from CyberGlove joint data and Polhemus

receiver position and orientation data. This computation could also be done using the

geometric computation objects in a patcher, but it would be computationally more

expensive.

• Hand feature computation - Objects for the computation of hand features such as



CHAPTER 4. VMI IMPLEMENTATION 40

Figure 4.4: Typical example of geometric computing using the new Max/FTS position and
orientation objects. This Max patcher takes a list of positions, projects these on the plane
that best fits them, then rotates the plane (with projected positions) and eliminates z. This
patcher enables subsequent fitting of 2D parametric curves to the x-y coordinates (e.g. the x-y
coordinates computed from the positions marking the thumb and index fingers).

the distance between thumb and index fingertips and the distance between left and

right hand palm are easily calculated using the above geometric computation objects

in a patcher. Objects were also made for computation of the orientation of a plane

(plane, see figure 4.4) such as the palm, the average position of a selected number

of points of the hand (avgP ) and for computation of features based on the path of

a selected point of the hand (bufP ). Other objects for the computation of features

such as finger and hand curvature using a curve fitting algorithm, estimated grip force

using a grasping taxonomy etc. would be useful but have not been programmed.

• Virtual object processing - The sheet object implements a physical model of a

sheet of two layers of masses connected through springs (see figure 4.5 and 4.6) [23].
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The four corners of the sheet act as the control points and can be stuck, or clamped

to the index and thumb tips of both hands for example. Similarly, balloon implements

a physical model of a single layer of masses positioned in sphere-like form (see figure

4.7 and 4.8).

• Virtual object feature computation - Many of the geometric computation objects

and some of the hand feature objects can be used to compute virtual object features.

Other types of virtual object feature computations involve superquadrics, a mathe-

matical method to describe a wide variety of shapes with two parameters specifically

related to virtual object (vertical and horizontal “roundness” or “squareness”) and

9 others for size, orientation and position of the virtual object. “Roundness” is an

abstract feature which might map well to abstract sound features such as “brightness”

[98]. Based on [87] a superquadric object was programmed that fits a virtual object

described in terms of superquadric parameters to a set of positions. As the fitting

process is iterative, it is computationally expensive (order of 100 ms). A simpler ap-

proach was implemented in a feature computation object ellipsoid which fits only a

virtual object described in terms of ellipsoid parameters (i.e. three size parameters) to

the list of positions. For 2D curve fitting the polynomial object, which approximates

a list of positions by a polynomial of at most second degree, was programmed. The

kappa2D object computes the curvature of a 2D curve, whereas the kappa3D object

computes the curvature of a 3D surface.

4.3 VMI Prototypes

Two types of VMI prototypes were created, one using a virtual object with a behaviour of

a rubber sheet and another using a virtual object with a behaviour of a rubber balloon (see

the appendix on Operating Instructions for pictures of the Max/FTS patches which were

used).

Chronologically, an attempt was first made to implement the balloon, but then found

too slow, so that the simpler model of the sheet was implemented. It was then reasoned

that by computing hand curvature from the average bending of the hand instead of fitting

a superquadric to the shape of the hands, the balloon model could still be implemented as

the computation and display of a superquadric requires far less computing time than the

fitting computations.
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The manipulation gestures for sculpting were based on the pragmatics of claying. The

virtual object could be manipulated either while it was “held” by (a selected number of)

joints and subsequent hand motions moving or changing the shape of the object or it could

be manipulated by “touching” it. A footswitch enabled selection of either manipulation

method.

To control parameters of the sound that define the spatial properties of the space in

which the sound is generated, position and orientation of the virtual objects were mapped

as if the virtual object was a sound radiating object. Thus, the virtual object’s position

and orientation were simply mapped as follows: left/right position to panning, front/back

or depth position to reverberation level, angle of the object’s main axis with respect to the

vertical axis to reverberation time and virtual object volume was mapped to loudness.

Mapping virtual object height to pitch could be “intuitive”. However, due to human

inaccuracy in moving the hands to absolute positions without tactile or force feedback

and only (delayed) acoustic and visual feedback, in combination with a high sensitivity for

perceiving pitch changes, controlling pitch in this way was ineffective. Thus, the pitch of

the sound was either fixed at one frequency, or was pre-programmed as a sequence. Instead

the virtual object height was mapped to mid-pass filter amplitude.

The remaining available sound parameters in the synthesis model used were timbral

parameters attack time, release time, flange index, chorus depth, frequency modulation

index, and low/mid/high-pass filter amplitude and filter frequency.

The virtual objects were displayed graphically in real-time as 3D projections on a 2D

screen, against a black background, together with line drawings of the hands.

4.3.1 Rubber Sheet

To implement a virtual object with a behaviour of a rubber sheet, the object sheet was used

to compute the virtual object voxels. The object holding pragmatics involved a pinch grip.

The voxels of the tips of the index and thumb fingers were used as the voxels of the four

corners of the virtual sheet. Thus, rotating, but not moving, the finger tips would result in

bending of the virtual sheet. Stretching, widening, positioning and orienting the sheet was

a direct consequence of moving the index and thumb fingers and/or the hands.

The fingertips of both hands or one hand only could be clamped to the corners of the

sheet (figure 4.5). If only one or none of the hands was clamped, the other hand or both

hands could manipulate the sheet by “touching” it (figure 4.6). Manipulation with the



CHAPTER 4. VMI IMPLEMENTATION 43

Figure 4.5: Example of the sheet clamped to the index and thumb tips of both hands.

left hand only resulted in a virtual input device similar to manipulation of the familiar

keyboard modulation wheel but with increased functionality. This was implemented with

the left corners of the sheet clamped to the left hand index and thumb and the right corners

of the sheet fixed in space.

Average length of the sheet, along the axis between left and right hand was mapped

to flange index. Width (i.e. axis between index and thumb) of the sheet was mapped to

chorus depth. A measure of the average curvature, computed with kappa3D, was mapped

to the frequency modulation index. The angle between left and right edge of the sheet was

mapped to vibrato.

4.3.2 Rubber Balloon

A virtual object with a shape and behaviour of a rubber balloon was created by using the

balloon object. Manipulation of this virtual object occurred through the movement of any

of the voxels that make up a hand. Thus the pragmatics of “holding” the object involved

manipulation gestures varying between a platform grip and a whole-hand grip or power grip.

When the virtual object was clamped to the hands, a superquadric shape was fitted

to the positions of these voxels. When switching from clamping to “touching”, the virtual
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Figure 4.6: Example of touching the sheet with both hands.

Figure 4.7: Example of the balloon clamped to both hands.

object surface positions were used as the starting positions for a physical simulation of a

rubber balloon. Joints of both hands or one hand could be clamped to surface points of the

balloon (figure 4.7).

If no hand or only one hand was clamped, the other hand(s) could manipulate the sheet

by “touching” it (figure 4.8). As in the case of the sheet, manipulation of a virtual mod

wheel, using the left hand only, was implemented with the balloon clamped to all positions

used to represent the left hand.

The object ellipsoid was used to compute virtual object features. The length of the main,

i.e. longest, axis of the balloon was mapped to flange index and the cross-sectional surface

area was mapped to chorus depth. The “roundness” of the object was not computed using

the superquadric object due its computation time but was estimated using the bending of
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Figure 4.8: Example of touching the balloon with both hands.

the fingers. The “roundness” was mapped to the frequency modulation index.



Chapter 5

VMI Evaluation

There are a number of methods to evaluate the VMI environment described in chapter 4.

Heuristic evaluation by experts is difficult because there are no expert users of the VMI

implemented environment and expertise specifically in VMI design is unavailable. Model

based evaluation is only partially useful due to the fact that applicable models only apply

to a limited number of aspects of the VMI environment and are difficult to integrate due

to their origin in different disciplines. A comprehensive model of musical performance is

unavailable.

In the following sections, based on informal live user observation and analysis of video

material, the VMI environment and prototypes will be discussed in terms of the research

objectives listed in chapter 2 and the requirements specified in chapter 3, with a focus on

manipulation.

5.1 Data Acquisition

Due to time and resource limitations, the VMI environment was informally tested by the

author and research colleagues only, with the CyberGloves calibrated to the author’s hands.

This group of approximately 15 test users included 3 amateur musicians. Usage consisted

of performance of 3 MIDI sequences (two bossa nova style songs and one rock style song)

and single tone experimentation (single pitch was automatically turned on and off, allowing

evaluation of timbral and spatialization changes).

46
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Documentation

Some of the use of the environment by the author was videotaped:

• 2-handed balloon performance (29 min)

• 1-handed balloon performance (4 min)

• 2-handed sheet performance (14 min)

• 1-handed sheet performance (8 min)

The appendix includes an edited version of this video material together with a description

of the system.

5.2 Manipulation

The design goal was to allow the performer to interact with the control surface using common

manipulation pragmatics. Moving and rotating the virtual object while “holding” it was

mostly effortless, as it was virtually identical to the manipulation of physical objects.

Touching the virtual object to move, rotate or shape the virtual object, required effective

feedback of the contact between the hands and the virtual object. As no tactile feedback or

force feedback was available, the performer had to rely on the visual feedback generated from

the hand movements affecting the virtual object or the performer had to rely on changes

in the sound. This method proved not so effective, probably because of a lack of suitable

depth cues and because the absolute location of the virtual object had to be kinesthetically

remembered (instead of being able to rely on tactile feedback when collision of the hand with

object occurred) each time the hands moved without affecting the virtual object surface.

Most test subjects informally felt more comfortable working with the balloon than with

the sheet given the sonifications used. Further testing is needed to verify whether this

preference was due to the sonification of balloon features or to the type of manipulation the

balloon afforded. Differences between the two prototypes are outlined below.

5.2.1 Rubber Sheet

The control of virtual object position and orientation took no time to get used to as it

was similar to manipulation of physical objects. As for shape, it was found that control of
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curvature was limited by the fact that only the four corners of the sheet could be manipulated

using the pinch grip. Normally, one positions fingers or fingertips in various ways on the

surface to control the curvature. For example, to create a curved sheet, movements had

to be exaggerated. Also, it was not possible to create a sheet with double bending in

one direction. This limitation resulted sometimes in unwanted co-articulation of shape

parameters, i.e. it was difficult to accept the limited control of curvature and not affect

other shape features with the exaggerated movements. Some co-articulation of shape and

position and/or orientation features was unavoidable, but could, with careful attention, be

kept to a minimum. The length was easiest to control, then the width and the angle between

left and right edge of the sheet.

Using the sheet as a virtual modulation wheel allowed left hand gestures to be more

expressive than typical keyboard modulation wheel gestures and hence provided for a more

dramatic performance effect. In addition, the reference point (the right corners) could easily

be moved, so as to accommodate rapid changes in the zero-point of any modulations given

different musical context, by clamping the right corners to the right hand temporarily.

5.2.2 Rubber Balloon

The “holding” of the virtual object was somewhat unnatural, as parts of the hand sometimes

passed through the surface of the virtual object during manipulations.

It was unclear how to infer “roundness” of the virtual object accurately from the per-

former’s movements, due to the fact that normally the hand is only partially touching an

object’s surface. Any sphere-like object can be held with anywhere from a few finger tips to

the entire hand to change the shape using claying pragmatics. This problem made “round-

ness” difficult to control and resulted, as in the case of the sheet, in unwanted co-articulation

of shape parameters. When the cross-sectional surface area was increased the balloon would

also become more rectangular or ellipsoid if the performer would unintentionally extend or

flex the fingers. In addition, due to errors in the estimation of finger bending sometimes jit-

ter occurred, i.e. the virtual object would at times jump from cube-like to ellipsoid without

any significant hand motions. As with the sheet, some co-articulation of shape and position

and/or orientation features was unavoidable, but could, with careful attention, be kept to

a minimum.

Manipulation using the left hand only, with the balloon entirely clamped to the hand

was not as natural as in the case of the sheet, most likely due to a missing reference point
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(the rightmost corners in the case of the sheet - in hindsight, the balloon could also have

been fixed in space at one end) and hence more difficulty in manipulating the shape of the

balloon with one hand. Nevertheless manipulation of the position and orientation of the

virtual object was effective, but the same sound effects might have been achieved without

the presence of the virtual object. In terms of shape manipulations, balloon length was

easiest to control, then cross sectional surface area and then “roundness”.

5.3 Sonification

The design goal was to create a sonification of the control surface that is responsive (i.e.

results in perceptible changes of sound and music parameters) to performer gestures. This

was not an easy task. For example, it was found that when mapping a virtual object feature

to a sound parameter, offsetting and scaling the value of the virtual object feature required

some arbitrary heuristics based on workspace dimensions etc. A solution without such

heuristics would be preferred. In addition, undesired co-articulation of shape parameters

required that virtual object features were chosen carefully for sonification. Due to the

available manipulation methods certain virtual object features could only be controlled

together, so they should not be mapped to sound parameters that may need to be controlled

independently. However, the main challenge was to create a sonification that had similar

expressive qualities as the gestures themselves, so that control would appear natural.

As mentioned in section 5.1, most test subjects informally felt more comfortable working

with the balloon than with the sheet given the sonifications used. Both for the rubber sheet

and for the balloon the mapping of virtual object position and orientation worked equally

well and cost no effort to learn. Informal evaluation showed the mapping of virtual object

shape to work sufficiently well. In the case of the balloon, due to jitter (i.e. the virtual

object would at times jump from cube-like to ellipsoid without any significant hand motions),

occasionally unpredictable sound variations occurred. Possibly this can be circumvented by

algorithm and patch adaptations.

5.4 Visualization

The appearance and behaviour of the control surface was sufficiently similar to common

physical objects to allow performers to immediately use the VMIs. It was not so easy to
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perceive the depth of the graphical environment and the absolute position of the virtual

object, necessary for “touching” manipulations. The lighting and coloring were effective,

and helped in cases when the surface folded through itself or turned partially inside out.

5.5 Adaptation

The design goal was to allow as many VMI aspects as possible to be adaptable and/or adap-

tive through an easy-to-use programming interface. The use of Max/FTS proved effective

for this purpose, although the version of Max/FTS used in the VMI environment suffered

from a poorly designed graphical interface. For example, the making of patches was often

tedious due to difficulty in connecting objects to other objects via “wires”and an increas-

ing difficulty in comprehending a patch the higher the number of “wires”. The ease-of-use

could definitely have been better. A new version of Max/FTS called jMax may improve this

aspect.

The addition of FTS objects allowed for quick prototyping of gestural analysis compu-

tations, and an almost unlimited number of possibilities for adaptation. Small adjustments

could easily be implemented, even while a performer was using the environment. In terms

of adaptability, the library of FTS objects was not tested for its usefulness for making VMIs

relying on sign-like languages.

5.6 Engineering

For musical performance, the VMI has to operate within real-time, i.e. hand actions have

to correspond with visual and auditory changes without any perceptible time delays. Only

if the task is to design a sound or compose music, instead of performing it, auditory changes

may be delayed, but visual changes should still be occurring in real-time. The main de-

lays were incurred by the sensor data acquisition (approximately 60 ms) and the physical

modeling computations (approximately 8 ms).

The sensor data acquisition delay could not be reduced to the theoretically possible

minimum. Probably the long serial cables (approximately 30 m) connecting the computer

in one room with the serial interfaces in another room prohibited use of higher baudrates

(56K and 115K). The computations could be completed in real-time if a suitably low (order

of 100) number of virtual masses of the physical models was chosen. The computation of
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sound synthesis parameters and sound generation occurred in approximately 2 ms, so that

acoustic feedback occured within approximately 70 ms, which is very close to real-time (60

ms) given the type of sound changes. The OpenInventor software displayed the graphics

within three frames (i.e. 50 ms on a 60 Hz refresh rate monitor), so that the visualization

was displayed within at most 120 ms, i.e. within real-time (200 ms).

The combination of CyberGlove and Polhemus sensors captured almost all possible hand

movements and gestures. While the CyberGlove is probably one of the most accurate means

to register human hand movements, accurate measurement of thumb movement was still

difficult due to the fact that the sensors intended for the thumb did not map to single

joints but to some of the neighbouring joints at the same time. Nevertheless, with the hand

model used it was possible to reach acceptable accuracy for the purpose of this research,

but the calibration was somewhat tedious as well as individual specific. Each joint had

to be separately calibrated by setting the gain and offset of each joint flex sensor. No

patch was implemented that allowed a user to execute a standard set of postures and/or

gestures to provide calibration settings. Last but not least, the tethering of the sensors was

inconvenient.

At the beginning of this research a graphical display was not deemed a high priority,

but during development the graphical display of hands and virtual object proved to be very

useful as a method to verify that hand and shape modeling were operating correctly and it

also proved a simple way to show new users what to do. Its likely that even with experienced

users the graphical display will have some value to finetune their motions.

5.7 Summary

Based on informal testing by the author, a handful or research colleagues and video material

of the author’s use of the environment, the evaluation of the VMI environment can be

summarized as follows:

• Manipulation - The control of virtual object shape often required some effort to

master due to the need for exaggerated movements and/or the need to learn limitations

to the control of shape. Due to these limitations to manipulation, unwanted co-

articulation of virtual object features could occur. While it is possible that such

co-articulation can be used to the performers advantage in certain tasks, in the real

world the virtual object features used can be controlled separately. The “touching”
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of virtual objects was difficult due to a lack of tactile and force feedback, or suitable

depth clues.

• Sonification - The mapping of position and orientation to spatialization parameters

proved easy to use. The mapping of virtual object shape to a variety of timbral pa-

rameters offered no obvious analogy to the physical world to the user. Thus, learning

was required to obtain desired acoustic feedback in a natural way using the manipu-

lation methods. Forced co-articulation of some shape features prohibited independent

control of the sound parameters they were mapped to. Scaling and offsetting of virtual

object features for mapping to sound parameters was somewhat arbitrary.

• Adaptation - Although adaptation of VMIs was possible in many diverse ways, the

user interface to implement these adaptations was not so easy to use without significant

technical expertise.

• Engineering - While acceptable real-time performance capturing almost all hand

gestures, was achieved, expensive technology is required to implement it.

• Interaction - Different types of interaction were tried out. The left-hand-only ma-

nipulation method could provide a useful alternative to the standard keyboard mod-

ulation wheel in situations where the right hand is needed for pitch control using e.g.

a keyboard. The naturalness of the interaction is affected by both the manipulation

methods afforded by the virtual object and the sonification of the object and appears

natural if inspired by the physical world.

5.8 Recommendations

Based on the experience with the implemented VMI environment the following recommen-

dations and ideas can be listed for continuation and extension of the work:

• Pragmatics - There is a need to identify and address manipulation pragmatics in

more detail, which should make manipulation of the virtual musical instrument easier

because it will make a better use of already established movement patterns, while in

some cases undesirable co-articulation of virtual object features may be avoided.
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• Manipulation vs. Signing - The distance between the virtual object and the per-

former’s hand(s) can perhaps be used to interpret hand movements that occur far

from an object in terms of symbols, i.e. as gesticulation and/or signing (depend-

ing on the formalization), while hand movements in close proximity to an object can

be interpreted as multidimensional continuous parameter changes, i.e. manipulation

gestures.

• Touch/Force - Touch and force feedback will make the control of timing aspects

of musical performance available, and also enable finer control of the virtual musical

instrument.

• Simulation - To improve the behaviour of the virtual object in response to the manip-

ulation by the performer more accurate and detailed (physical) models of 3D surfaces

are needed.

• Motion - Virtual objects may have mass and hence gain momentum from manipula-

tions, making autonomous motions or shape changes.

• Fuzzy Boundary - Force fields or fuzzy boundaries surrounding an object can be

programmed to enable multiple objects to affect each other. Useful when different

objects have intersecting motion paths.

• Zones - Spatial zones can be defined that alter the sound (e.g. sound effects are

applied) when the object is placed in or moved through it.

• Sonification - A significant amount of work needs to be done to identify suitable

methods to visualize sound in terms of features of a 3D virtual object. In addition,

co-articulated virtual object features, whether desired or not, should be sonified such

that they do not force the user to make unusual movements.

• Real-time - The speed of sensor data acquisition needs to increase while computa-

tional efficiency needs to improve in order to enable higher detail and tighter control

of the sound parameters.

• Wireless - Wireless connections will make the CyberGlove and Polhemus sensors

much easier to use.
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• Display - For a better perception of the absolute position of the virtual object, useful

for more accurate “touching” manipulations, a patterned background with depth clues

as well as a 3D display may be helpful.

• Multi-object - An expansion of the environment where multiple virtual musical in-

struments, each representing an auditory stream such as notes and/or speech, can be

accessed and controlled will enable a conductor and orchestra performance configura-

tion.

• Multi-user - The environment can be expanded to a configuration where multiple

(remotely networked) performers control each their own virtual musical instrument or

together one virtual musical instrument.

• Other Domains - The developed interaction methodology may be applied to other

domains, such as the editing of texture, color and lighting of graphical objects.



Chapter 6

Conclusion

What can be learned from the musical instrument design experiment involving advanced

human movement tracking technology described in this dissertation ?

The main result of the research is that a prototype of an environment for design of virtual

instruments with 3D geometry has been successfully implemented, allowing real-time perfor-

mance in 3D and adaptation to exploit many manipulation gestures.

While this result is encouraging, the preliminary evaluation of the environment showed that

for a natural interaction to take place the user or performer should be able to:

• 1. apply manipulation methods used in everyday life to change shape, position and

orientation of the virtual object

• 2. believe that the sonification of the virtual object is qualitatively and directly related

to the variations in virtual object shape position and orientation.

Contribution in Context

If we examine the results in the context of the discussion in chapter 2, the contribution of this

research appears tiny, as the implemented VMI prototypes appear such rudimentary musical

instruments, unable to withstand any comparison with traditional, real acoustic instruments.

While adaptation is virtually unlimited within the VMI environment, such adaptations still

require a significant amount of technical expertise. Nevertheless, in comparison, similar

adaptations of physical instruments not only require an equal or greater amount of technical
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expertise but are also limited by the laws of physics. On the other hand, physical instruments

offer the musically very useful tactile and (usually) force feedback.

In terms of human factors and gestural communication research, the work has shown

the feasibility and usefulness of 3D interactive virtual input devices in a sound control

task - further work is needed to demonstrate usefulness in other application domains. The

value of the VMI environment as a virtual input device prototyping tool should not be

underestimated. More on the theoretical side, different forms of sculpting pragmatics were

identified.

In terms of music and performing arts research, exciting new possibilities for musi-

cal performance have been identified and shown to be technically feasible (though costly).

A research and development path to realize these new performance possibilities has been

identified. The virtual modulation wheel, although much work is needed to find an appro-

priate implementation, is one of the many examples of new virtual controllers that can be

prototyped in the VMI environment. Last but not least, it would easily be overlooked that

Max/FTS, a state of the art sound and music programming environment, has been extended

with a gesture analysis library of software objects.

Future Work

Future work should address an important question that arose from this research:

To what extent do performers really want their musical instruments adapted during their

career, if they were given unlimited freedom to require such adaptation ?

This question can be answered by experimentation with a musical instrument design en-

vironment as was implemented for the research presented in this dissertation. While the

current environment focusses on hand movements, future work may also address other types

of human movement.

Furthermore, while chapter 5 includes detailed recommendations for how the current

prototype can be expanded and improved, more generally future research on VMI’s should

concentrate on the identification of manipulation pragmatics, and their derived forms which

are present in gesticulation and sign languages, as well as how movement features are co-

articulated. Equal effort should be spent on identifying methods to visualize sound in terms

of features of a 3D virtual object. While chapter 3 is a first attempt to cover some of these

issues within the context of (virtual) musical instrument design, a more comprehensive



CHAPTER 6. CONCLUSION 57

understanding of these two elements is needed. This understanding will contribute to the

creation of useful, effective and enjoyable new interaction methods. Engineering efforts

should concentrate on the implementation of virtual object simulation techniques and faster

sensor data acquisition, while whole-hand tactile and force feedback are most desirable for

realization of more refined and immediate interaction.



Appendix: Operating Instructions

The Sound Sculpting application consists of two Max/FTS applications and one OpenInventor-

based application that are all run on one multi-processor SGI machine with audio-serial

option to connect to CyberGlove, Polhemus and footpedal. In the following sections the

various components and options are explained and detailed. See the appendix “Max/FTS

object reference” for details on the added functionality to Max/FTS.

Equipment

Equipment list:

1 SGI R10K multiprocessor such as an Onyx with audio-serial option (ASO)

1 Virtual Technologies left hand CyberGlove instrumented glove with serial interface

1 Virtual Technologies right hand CyberGlove instrumented glove with serial interface

3 Polhemus Fastrak 6 DOF sensors with one serial interface

1 RS232 to RS422 converter (Roland Sound Canvas 55 mkII can be used as such)

1 MIDI foot pedal or 1 Infusion Systems I-Cube Digitizer with TapTile sensor [103]

1 MIDI keyboard

headphones or sound amplifier with speakers

MIDI cables

Software:

IRCAM Max/FTS version 1.5.3 - real-time, graphical programming language

ssView - OpenInventor-based graphics command server
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MIDI installation

MIDI can be operated on any of the 6 serial ports (usually tty72) of an SGI with ASO

by typing “startmidi -n midiPort1 -p aso232 -d /dev/ttyd72”. The name of the port will

be “midiPort1”, and a RS232 capable MIDI hardware interface, such as the Roland Sound

Canvas 55 mkII, or an RS232 to RS422 converter in conjunction with an RS422 based MIDI

interface should be used.

Max/FTS installation

To operate Sound Sculpting Max/FTS version 1.5.3 requires the shared objects libicube.so

and libss.so to be linked at boot time. A file named .ftsbootload should be present in the

directory /homedir and it should contain the lines:

ss /homedir/ss/fts/lib/irix6.2/libss.so

icube /homedir/ss/fts/lib/irix6.2/libicube.so

Hand Modeling and Virtual Object Processing

Max startup script “/homedir/ss/Max-hand” starts up Max/FTS with small audio buffers

and MIDI (internal and via the serial port). The patch “handControl” is automatically

opened.

Commands for hand.pat:

reset - button to initialize hand.pat (this takes about 11 seconds)

point - button to obtain one dataset from hand.pat

stream - switch to turn on/off continuous sampling from hand.pat

draw - switch to turn on/off sending out of drawing commands (make sure ssView is running

first)

Commands for sheet.pat:

inlet 0 - expects 0 or 1 from switch to turn computation of the sheet on/off

inlet 1 - expects bang from button to initialize sheet.pat

inlet 2 - expects 0 or 1 from switch to turn on/off sending out of drawing commands (ssView
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is required to display the graphics)

inlet 3 - expects 0 or 1 from switch to turn on/off clamping

inlet 4 - expects 0 or 1 from switch between holding left edge of sheet with left hand or

entire sheet with both hands

inlet 5 - expects 0 or 1 from switch between only corners or entire fixing of the sheet

inlet 6 - switch to turn on/off touching the sheet with finger tips

Commands for graphicsS.pat:

open - button to open a shared memory buffer with key 1

closeServer - message to close ssView (if it is open in the first place, shared memory buffer

with key 1 will still remain open)

Commands for balloon.pat:

inlet 0 - expects 0 or 1 from switch to turn computation of the balloon on/off

inlet 1 - expects 0 or 1 from switch to turn on/off sending out of drawing commands (ssView

is required to display the graphics)

inlet 2 - expects 0 or 1 from switch to turn on/off clamping

inlet 3 - expects 0 or 1 from switch between holding balloon with left hand or with both

hands

inlet 4 - expects 0 or 1 from switch between no fixing or entire fixing of the balloon

inlet 5 - switch to turn on/off touching the balloon with any finger joints

Commands for sheet-snd.pat:

inlet 0 - switch to turn computation and mapping of sheet features on/off

Commands for balloon-snd.pat:

inlet 0 - switch to turn computation and mapping of balloon features on/off

Commands for soundS.pat:

send - button to enable writing to shared memory buffer with key 2

Commands for note-color.pat:
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draw - switch to turn on/off mapping of incoming MIDI notes to color of graphically dis-

played surface

Sound Synthesis

Max startup script “/homedir/ss/Max-sound” starts up Max/FTS with large audio buffers

to avoid any clicks and both internal MIDI as well as serial port MIDI. The patch “sound-

Control” is automatically opened.

Commands for polySynth.pat:

trig - trigger a 10 second (duration can be set from within polySynth.pat) note from

polySynth.pat

beat - switch to turn on/off pulsed sound from polySynth.pat

intern - button to increment MIDI channel for receiving MIDI notes (channel can also be

set using the number box below it) from internal (to SGI) MIDI sources for polySynth.pat

keyb - button to increment MIDI channel for receiving MIDI notes (channel can also be set

using the number box below it) from MIDI keyboard for polySynth.pat

notes off - button to turn off receiving any MIDI notes (channel is set using the number

box beside it) from any MIDI source for polySynth.pat

slider - slider to set volume for any MIDI notes (channel is set using the number box beside

it) from any MIDI source for polySynth.pat

Commands for soundR.pat:

receive - button to enable reading of shared memory buffer with key 2

(this buffer should be opened by starting up the Max-hand application, see below/above)

Max/FTS patches for Sound Sculpting

Below follows a brief description of the Max/FTS patches used to run the sound sculpting

application. All these patches can be found in /homedir/ss/.
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graphicsS.pat sets up and writes to the shared memory buffer with key 2 (the key num-

ber can be changed with the patch), which is read by ssView. In order to see the graphical

hand and surface this patch is necessary.

hand.pat (figure 6.1) handles all the interfacing with the Polhemus and CyberGlove sensors,

computes the 23 voxels of the hand model and sends drawing commands for drawing the

hand (left hand is blue, right hand is red) to ssView. The gloves are calibrated for the hands

of Axel Mulder. Sampling rate is default 40 Hz.

Figure 6.1: The Max/FTS patch hand.pat for capturing hand shape, position and orientation
(calibration capabilities omitted for clarity).

sheet.pat (figure 6.2) physically models a surface of two layers of masses connected through

damped springs, in clamp mode attached to either both or only the left hand, and sends

drawing commands for drawing the sheet to ssView. In touch mode the surface can be

touched-up by “touching” with the indexes of the hand. All the sheet parameters can be

set using this patch, default is a sheet of 10 (NW) x 10 (NL) nodes, with X0 = 2, Y0 = 2,

Z0 = 4, K = 7.0, Q = 3.0, I = 15, DT = 0.05, FT = 0.05, R0 = 2.0 and IM = 10.
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Figure 6.2: The Max/FTS patch sheet.pat for creating and controlling a physical simulation of
a rubber sheet.

sheet-snd.pat (figure 6.3) computes features of the sheet computed with sheet.pat and maps

the features to sound parameters. The features are average position of the sheet based on

the position of the four corners (X value maps to reverb level, Y value maps to panning, Z

value maps to vibrato), average curvature (maps to modulation index), average sheet width

based on distances between corners (maps to high-pass amplitude), average sheet length

based on distances between corners (maps to low-pass amplitude), angle between lines rep-

resenting left edge and right edge of sheet calculated from the four corners, (maps to both

attack and release time), average angle of the sheet with the vertical angle (maps to reverb

time).

balloon.pat (figure 6.4), in clamp mode fits an ellipsoid to the hand data as acquired with

hand.pat and estimates “roundness” for the surface to display based on finger bending using
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Figure 6.3: The Max/FTS patch sheet-snd.pat for mapping sheet features to sound parameters.

estE.pat (figure 6.5) and sends drawing commands for the resulting superquadric to ssView.

In touch mode, the surface data computed last in clamp mode are used to initalize a physical

model of a balloon-like surface of one layer of masses connected through damped springs,

which surface can be touched-up by “touching” with any part of the hands. All the balloon

parameters can be set using this patch, default is a sheet of 10 (NW) x 10 (NL) nodes, with

X0 = 2, Y0 = 2, Z0 = 1, K = 0.9, Q = 0.6, I = 5, DT = 0.1, FT = 0.1, R0 = 4.0 and IM = 10.

balloon-snd.pat (figure 6.6) fits an ellipsoid to the surface data as computed with balloon.pat

and maps the parameters to sound parameters. The computed parameters are center of mass
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Figure 6.4: The Max/FTS patch balloon.pat for creating and controlling a physical simulation
of a rubber balloon.

position (X value maps to reverb level, Y value to panning and Z value to vibrato), orien-

tation (angle with vertical axis maps to reverb time), longitudinal size dimension (maps to

flange index), transversal surface area (maps to chorus depth), chorus depth and “round-

ness” (maps to frequency modulation index), .

soundS.pat and soundR.pat respectively write to and read from shared memory buffer with

key 2 (the key number can be set with the patch) the sound parameters for polySynth.pat.

These patches are required to send the sound parameters computed from the surface ma-

nipulated using Max-hand and ssView, to Max-sound.

synth.pat (figure 6.7) synthesizes polyphonic sound using multiple Voice patches (figure
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Figure 6.5: The Max/FTS patch estE.pat for estimating the hand curvature - used to set the
“roundness” of the balloon.

6.9) in polySynth.pat (figure 6.8). Available parameters are note pitch, note velocity, note

duration, vibrato, frequency modulation index, attack time, release time, low-pass ampli-

tude, mid-pass amplitude, high-pass amplitude, flange index, chorus index, reverb level,

reverb time, panning, master volume.

note-color.pat maps incoming single channel MIDI note pitch and velocity to RGB color

values, perhaps useful when keyboard or MIDI file is used to set pitch and velocity values

of the sound.

Graphics

When running the sound sculpting application as described above, the virtual object used

as virtual input device can be graphically displayed using “/homedir/ss/ssView -k 1”.

The command syntax is ssView -k keyNumber (when shared memory is used) or ssView
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Figure 6.6: The Max/FTS patch balloon-snd.pat for mapping balloon features to sound param-
eters.

-p portNumber (when TCP sockets are used).

The graphics display program ssView accepts the following commands:

closeServer - close the graphics display program

rotateCamera $1 $2 $3 $4 - rotate the camera of the graphics window

using angle axis values x, y, z, theta respectively

newLine $1 $2 $3 $4 - create a new line in the graphics window with

name $1 and colors r, g, b (8 bit values) respectively

deleteLine $1 - delete the line with name $1

addToLine $1 $2 $3 $4 - add to the line with name $1 the coordinates $1 $2 $3
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clearLine $1 - clear the line with name $1

super2D $1 $2 $3 $4 - draw a superquadric 2D curve with e1, a1, a2 and precision $4

super2Dtrans $1 $2 $3 $4 $5 $6 $7 - transform (translate and rotate) the superquadric

2D curve using parameters x, y, z (translation) and angle axis parameters a1, a2, a3, theta

super3D $1 $2 $3 $4 - draw a superquadric 3D virtual object with e1, a1, a2 and precision

$4

super3Dtrans $1 $2 $3 $4 $5 $6 $7 - transform (translate and rotate) the superquadric

2D curve using parameters x, y, z (translation) and angle axis parameters a1, a2, a3, theta

handColor $1 $2 $3 - change the color of the hand stick figure to color r, g, b

handCoords $1 $2 ..$70 - draw a hand stick figure of the left ($1 == 1) or right ($1 ==

0) hand using the coordinates given in $2 ..$70 (coordinates of respectively CMC, MCP1,

PIP1, TIP1, MCP2, PIP2, DIP2, TIP2, MCP3, PIP3, DIP3, TIP3, MCP4, PIP4, DIP4,

TIP4, MCP5, PIP5, DIP5, TIP5, PFC, RCUC, PHR)

sheetColor $1 $2 $3 - change the color of the sheet to color r, g, b

sheetCoords $1 $2 $3 .. - draw a sheet with $1 nodes in the length direction hand $2

nodes in the width direction, given the $1 * $2 coordinates specified as triplets $3 $4 $5 etc.

Bugs: Whenever Max/FTS crashes shared memory may be left open - closing ssView will

not close the shared memory. Remove the shared memory by using “ipcs” (to see IDs of

opened shared memory and semaphores) and ipcrm -m 〈 memory ID 〉 (to remove shared

memory) and ipcrm -s 〈 semaphore ID 〉 (to remove semaphores)

The OpenInventor [97] source code for ssView can be found in /homedir/fts/dev/src/graphics/,

files userIF2.c++, hand2.c++, serverLib.c, buffer.c, superQuad.c++, superQuad3D.c++,

line.c++.

Running Sound Sculpting

Having read all of the above, you are now ready to startup sound sculpting. The procedure

for starting up is:

connect and turn on all equipment

run “Max-hand”
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initialize the Cyberglove and Polhemus sensors

run “Max-sound”

run “ssView -k 1”

now you can select various options from the two Max windows
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Figure 6.7: The Max/FTS patch synth.pat for polyphonic sound synthesis including all sound
effect parameters. The polySynth object is shown in figure 6.8 as a patch.
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Figure 6.8: The Max/FTS patch polySynth.pat for polyphonic (8 voices) sound synthesis - each
Voice object is the patch shown in figure 6.9.
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Figure 6.9: The Max/FTS patcher Voice for synthesis of a single voice. Different timbres could
be created by using different waveforms for the oscillator.



Appendix: Max/FTS Object

Reference

The following details the Max/FTS objects that were added to the Max/FTS environment

specifically for the purpose of sound sculpting.

Communication

sms

Send data to other applications on the same machine or to the same Max/FTS (like stan-

dard send object) using shared memory with semaphores.

Object argument: default key (integer value)

Commands:

openSmem $1 - sets up shared memory buffer with key $1

closeSmem - closes shared memory buffer opened with openSmem

lowPrec - cuts floats to only one decimal when writing in shared memory buffer

printTime - print time in ms required to write complete message in shared memory buffer

printData - show debug messages

Bugs: Whenever Max/FTS crashes shared memory may be left open. Remove the shared

memory by using “ipcs” (to see opened shared memory) and ipcrm -m 〈 memory ID 〉 (to

remove shared memory) and ipcrm -s 〈 semaphore ID 〉 (to remove semaphores)

73
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Source code file: smem.c (shmemlib.c, buffer.c, ssutil.c)

smr

Receive data from other applications on the same machine or from the same Max/FTS (like

standard receive object) using shared memory with semaphores.

Object argument: default key (integer value)

Commands:

attachSmem $1 - attach to shared memory buffer with key $1

closeSmem - closes shared memory buffer opened with openSmem

printTime - print time in ms required to read complete message from shared memory buffer

and send it out the outlet

printData - show debug messages

Source code file: serial.c (shmemlib.c, buffer.c, ssutil.c)

serial

Send and receive characters via the serial port using a Unix character device driver. Note

that a message received in any of the inlets is immediately sent out, rather than usual wait-

ing for a message in the leftmost inlet.

Object argument: number of serial ports to interface (on the Onyx at most 6)

Commands:

send it out the outlet

open $1 $2 $3 - open serial device $1 at $2 baud on inlet and outlet $3 close $1 - close

device $1 printTime - print time in ms required to receive a complete message and

Source code file: serial.c (unixIO.c, ssutil.c)
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client

Send and receive characters using TCP sockets using a Unix character device driver.

Object arguments: client name (e.g. “MaxClient”), machine name (e.g. “miris66”), ma-

chine port number (e.g. 2000)

Commands:

send it out the outlet

connect - connect as client name to the machine with name and port as specified in object

argument

disconnect - disconnect from machine addCR - end each sent message with a carriage return

noCR - do not add a carriage return at end of message printTime - print time in ms required

to receive complete message and

Source code file: client1.c (comtools.c, clientLib.1.c, ssutil.c)

Sensor Interfaces

cyberglove

Interface the Virtual Technologies Cyberglove instrumented glove via the serial port using

a Unix character device driver. See also the Cyberglove manual.

Alternate object names: cg

Object arguments: serial device name (e.g. “ttyd1”), baud rate (upto 115200)

Commands: (with reference to the Cyberglove manual [101])

point - request one data set from Cyberglove

stream - set Cyberglove to continuously send data sets

stop - stop stream mode

gain $1 ... $18 - set gain of all 18 sensors

offset $1 .. $18 - set offset of all 18 sensors

light $1 - turn on or off LED of Cyberglove
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rad - output angles in radians

deg - output angles in degrees

raw - output angles in units as sent by Cyberglove (degrees)

cal $1 $2 $3 $4 $5 - calibrate sensor $1 so that raw values $2 and $4 result in values $3

and $5 respectively

calall $1 .. $72 - calibrate all sensors (sequentially named cmc rot, mcp1 flex, pip1 flex,

cmc abd, mcp2 flex, pip2 flex, mcp3 flex, pip3 flex, mcp3 abd, mcp4 flex, pip4 flex, mcp4 abd,

mcp5 flex, pip5 flex, mcp5 abd, palm arch, wrist flex, wrist abd) as above in one fell swoop

init - initialize the Cyberglove

reset - reset the Cyberglove

printTime - print time in ms required to receive complete dataset

printTTime - print time in ms required to receive complete dataset and send it out the

outlet

printData - show debug messages

Source code file: cg.c (unixIO.c, ssutil.c)

polhemus

Interface the Polhemus Fastrak 6 DOF sensor via the serial port using a Unix character

device driver. See also the Polhemus manual.

Alternate object names: ph

Object arguments: serial device name (e.g. “ttyd1”), baud rate (upto 115200)

Commands: (with reference to the Fastrak manual [100])

point - request one data set from Fastrak

stream - set Fastrak to continuously send data sets

stop - stop stream mode

boref $1 $2 $3 $4 $5 - see Fastrak manual

bore - see Fastrak manual

unbore - cancel bore command

origin $1 .. $11 - see Fastrak manual



APPENDIX: MAX/FTS OBJECT REFERENCE 77

unorigin - cancel origin command

metal - correct for errors due to ferro magnetic materials in field of Fastrak emitter

unmetal - stop correcting for errors due to ferro magnetic materials in field of Fastrak emit-

ter

inch - output data in inch

cm - output data in cm

rad - output angles in radians

deg - output angles in degrees

binary - set Fastrak to binary data format mode

print - print out current settings of Fastrak

port $1 $2 - open Fastrak on serial device $1 at baudrate $2

init - initialize the Fastrak

reset - reset the Fastrak

printTime - print time in ms required to receive complete dataset printTTime - print time

in ms required to receive complete dataset and send it out the outlet

printData - show debug messages

Source code file: ph.c (unixIO.c, ssutil.c)

Position Computing

P

Store and output the position(s) received in the inlet. When banged, output the last re-

ceived position(s).

Object arguments: initial values for x, y and z (float or integer values)

Source code file: position.c (ssutil.c)

+P

Add the position(s) received in left and right inlets. If the left inlet receives less positions

than the right inlet, only as many positions as were received by the left inlet will be output.
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If the right inlet only receives one position, all the positions received in the left inlet will

use the position received in the right inlet as the other operand. When banged, output the

last computed position(s).

Object arguments: initial values for x, y and z (float or integer values)

Source code file: position.c (ssutil.c)

−P

Subtract the position(s) received in left and right inlets. If the left inlet receives less posi-

tions than the right inlet, only as many positions as were received by the left inlet will be

output. If the right inlet only receives one position, all the positions received in the left

inlet will use the position received in the right inlet as the other operand. When banged,

output the last computed position(s).

Object arguments: initial values for x, y and z (float or integer values)

Source code file: position.c (ssutil.c)

∗P

Multiply the position(s) received in left and right inlets. If the left inlet receives less posi-

tions than the right inlet, only as many positions as were received by the left inlet will be

output. If the right inlet only receives one position, all the positions received in the left

inlet will use the position received in the right inlet as the other operand. When banged,

output the last computed position(s).

Object arguments: initial values for x, y and z (float or integer values)

Source code file: position.c (ssutil.c)
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crossP

Compute the cross product of the position(s) received in left and right inlets. If the left

inlet receives less positions than the right inlet, only as many positions as were received by

the left inlet will be output. If the right inlet only receives one position, all the positions

received in the left inlet will use the position received in the right inlet as the other operand.

When banged, output the last computed value(s).

Object arguments: initial values for x, y and z (float or integer values)

Source code file: position.c (ssutil.c)

dotP

Compute the dot product of the position(s) received in left and right inlets. If the left inlet

receives less positions than the right inlet, only as many positions as were received by the left

inlet will be output. If the right inlet only receives one position, all the positions received

in the left inlet will use the position received in the right inlet as the other operand. When

banged, output the last computed value(s).

Object arguments: initial values for x, y and z (float or integer values)

Source code file: position.c (ssutil.c)

normP

Compute the norm of the position(s) received in the inlet. When banged, output the last

computed value(s).

Object arguments: initial values for x, y and z (float or integer values)

Source code file: position.c (ssutil.c)
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‖P

Compute the magnitude of the vector represented by the position(s) received in the inlet.

When banged, output the last computed magnitude(s).

Object arguments: initial values for x, y and z (float or integer values)

Source code file: position.c (ssutil.c)

avgP

Compute the average position of the positions received in the inlet. When banged, output

the last computed position.

Object arguments: initial values for x, y and z (float or integer values)

Source code file: position.c (ssutil.c)

Pxyz

Output position(s) using the value(s) received in the inlets for x, y, z. When banged, output

the last computed position(s).

Object arguments: initial values for x, y and z (float or integer values)

Source code file: position.c (ssutil.c)

xyzP

Output x, y and z value(s) using the position(s) received in the inlets. When banged, output

the last computed value(s).

Object arguments: initial values for x, y and z (float or integer values)

Source code file: position.c (ssutil.c)
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bufP

Buffer positions received in the inlet. When banged, output the last received positions.

Object arguments: number of positions to buffer

Source code file: packPH.c (ssutil.c)

trigP

Output the position received in the inlet from left to right. When banged, output the last

received position.

Alternate object names: tP

Object arguments: number of trigger outputs

Source code file: packPH.c (ssutil.c)

Orientation Computing

O∗P

Compute the position(s) of the position(s) received in the right inlet re-oriented by the ori-

entation received in the left inlet. When banged, output the last computed position(s).

Object arguments: initial values for x, y and z (float or integer values)

Commands:

print - print out in Max window all received and currently computed data

Source code file: pos orient.c (ssutil.c)
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EtoO

Compute orientation(s) using the pitch, yaw and roll values received in the inlets. When

banged, output the last computed orientation(s).

Object arguments: initial values for pitch, yaw and roll (float or integer values)

Commands:

print - print out in Max window all received and currently computed data

Source code file: orientation.c (ssutil.c)

AAtoO

Compute orientation(s) using the angle axis value(s) (rotation angle theta and vector x, y,

z) received in the inlets. When banged, output the last computed orientation(s).

Object arguments: initial values for rotation angle theta and vector x, y, z (float or in-

teger values)

Commands:

print - print out in Max window all received and currently computed data

Source code file: orientation.c (ssutil.c)

OtoAA

Compute the angle axis value(s) (rotation angle theta and vector x, y, z) using the orienta-

tion(s) received in the inlets. When banged, output the last computed angle axis value(s).

Commands:

print - print out in Max window all received and currently computed data

Source code file: orientation.c (ssutil.c)
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∗O

Multiply the orientation received in left and right inlets. When banged, output the last

computed orientation.

Commands:

print - print out in Max window all received and currently computed data

Source code file: orientation.c (ssutil.c)

O

Store and output the orientation received in the inlet. When banged, output the last re-

ceived orientation.

Commands:

print - print out in Max window all received and currently computed data

Source code file: orientation.c (ssutil.c)

TO

Transpose the orientation received in the inlet. When banged, output the last computed

orientation.

Commands:

print - print out in Max window all received and currently computed data

Source code file: orientation.c (ssutil.c)

Voxel Computing

makeV

Pack position(s) and orientation(s) input in either inlet into voxel(s).
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Object arguments: default x, y, z for the position, pitch, yaw, roll for the orientation

and x, y and z size parameters.

Commands:

print - print out in Max window all received and currently computed data

Source code file: voxel.c (ssutil.c)

unmakeV

Unpack voxel(s) into position(s) and orientation(s).

Object arguments: default x, y, z for the position, pitch, yaw, roll for the orientation

and x, y and z size parameters.

Commands:

print - print out in Max window all received and currently computed data

Source code file: voxel.c (ssutil.c)

V

Store voxel(s) and output them when banged.

Object arguments: default x, y, z for the position, pitch, yaw, roll for the orientation

and x, y and z size parameters.

Commands:

print - print out in Max window all received and currently computed data

Source code file: voxel.c (ssutil.c)
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drawV

Output drawing commands to display the received voxel’s data graphically.

Object arguments: default x, y, z for the position, pitch, yaw, roll for the orientation

and x, y and z size parameters.

Commands:

print - print out in Max window all received and currently computed data

Source code file: voxel.c (ssutil.c)

Hand Computing

geoHand

Compute positions and orientations of all 23 joints of the hand model using Cyberglove and

Polhemus data.

Alternate object names: worldcoordinates, wc, gh

Object arguments: handedness (i.e. “left”, “right”), dataformat (i.e. “hand”, “voxel”,

“position” or “float”)

Commands:

right - compute right hand model

left - compute left hand model

tune $1 $2 - set parameter $1 to value $2 ($1 = 0: adjust CMC orientation; $1 = 1: adjust

MCP1 orientation; $1 = 2 and $1 = 3: adjust orientation of RCUC2, a virtual joint to

create a more realistic palm)

printTime - print time in ms required to compute complete dataset

printTTime - print time in ms required to compute complete dataset and send it out the

outlet
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Source code file: wc.c (ssutil.c)

VtoH

Pack voxels received in the inlets into a hand data structure.

Object arguments: handedness (“left”, “right”) and subsequently at most 23 character

strings (CMC, MCP1, PIP1, TIP1, MCP2, PIP2, DIP2, TIP2, MCP3, PIP3, DIP3, TIP3,

MCP4, PIP4, DIP4, TIP4, MCP5, PIP5, DIP5, TIP5, PFC, RCUC, PHR) indicating which

joints should be added in the hand datastructure and in which order they are received in

the inlets

Source code file: packPH.c (ssutil.c)

HtoV

Unpack a hand data structure received in the inlet as voxels.

Object arguments: at most 23 character strings (CMC, MCP1, PIP1, TIP1, MCP2, PIP2,

DIP2, TIP2, MCP3, PIP3, DIP3, TIP3, MCP4, PIP4, DIP4, TIP4, MCP5, PIP5, DIP5,

TIP5, PFC, RCUC, PHR) indicating which joints should be output from the hand datas-

tructure or the character string “all” to indicate that all joints should be output.

Source code file: packPH.c (ssutil.c)

makeH

Pack positions received in the inlets into a hand data structure.

Object arguments: handedness (“left”, “right”) and subsequently at most 23 character

strings (CMC, MCP1, PIP1, TIP1, MCP2, PIP2, DIP2, TIP2, MCP3, PIP3, DIP3, TIP3,

MCP4, PIP4, DIP4, TIP4, MCP5, PIP5, DIP5, TIP5, PFC, RCUC, PHR) indicating which

joints should be added in the hand datastructure and in which order they are received in

the inlets
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Source code file: packPH.c (ssutil.c)

unmakeH

Unpack a hand data structure received in the inlet as positions.

Object arguments: at most 23 character strings (CMC, MCP1, PIP1, TIP1, MCP2, PIP2,

DIP2, TIP2, MCP3, PIP3, DIP3, TIP3, MCP4, PIP4, DIP4, TIP4, MCP5, PIP5, DIP5,

TIP5, PFC, RCUC, PHR) indicating which joints should be output from the hand datastruc-

ture or the character string “all” to indicate that all joints should be output (an additional

integer value can be used to omit, counting from the end of the above list of joints, a specific

number of joints)

Source code file: packPH.c (ssutil.c)

Hlist

Convert a hand data structure to a list message with first atom containing the symbol

“handCoords”, second atom containing 0 (right) or 1 (left) representing handedness and

the remaining atoms the x, y, z value pairs of the joints.

Alternate object names: H2f, Hand2floats, Htof, Hmsg

Object arguments: at most 23 character strings (CMC, MCP1, PIP1, TIP1, MCP2, PIP2,

DIP2, TIP2, MCP3, PIP3, DIP3, TIP3, MCP4, PIP4, DIP4, TIP4, MCP5, PIP5, DIP5,

TIP5, PFC, RCUC, PHR) indicating which joints should be added to the list message (and

in which order) or the character string “all” to indicate that all joints should be added

Source code file: packPH.c (ssutil.c)



APPENDIX: MAX/FTS OBJECT REFERENCE 88

Virtual Object Processing

superquadric

Compute surface voxels (left outlet) and output graphical drawing commands (right outlet)

for a superquadric virtual object given the inlet data values for center position, orientation,

size parameters a1, a2, a3 and shape parameters e1 and e2. A superquadric surface is defined

by the 3-D vector 
x

y

z

 =


a1 cosε1(η) cosε2(ω)

a2 cosε1(η) sinε2(ω)

a3 sinε1(η)


where

−π/2 ≤ η ≤ π/2

−π ≤ ω < π

Alternate object names: SQ

Object arguments: number of points to compute (not the same as number of points to draw)

Source code file: sq.c (ssutil.c)

sheet

Compute surface voxels (left outlet) and drawing commands (right outlet) using a physical

model of a sheet consisting of two layers of masses connected through damped springs. The

left inlet expects voxels as clamping voxels for the corners, the right inlet can be used to

input voxels to “touch” the sheet. Each time a surface node is touched, the middle outlet

outputs that surface node as a voxel.

Object arguments: number of nodes in length direction (NL), number of nodes in width di-

rection (NW), distance between nodes in lenght (X0), distance between nodes in width (Y),

distance between nodes in height (Z0), spring constant (K), damping constant (Q), number

of iterations in settling (I), time interval (DT), force threshold (FT), minimum radius for

a node to be “touched” (R0), maximum touching history length (IM) - note that setting

these parameters requires some trial and error to obtain a stable surface

Commands:

reset - setup the sheet roughly according to the current voxels received in the left inlet

clamp $1 - set clamp nodes to the input voxels each time they are received in the left
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inlet ($1 = none: do not clamp anything, corners: clamp only corner nodes such that

the surface extends from the fingers, Rcorners: clamp only right corner nodes such that

the surface extends from the fingers, Lcorners: clamp only left corner nodes such that the

surface extends from the fingers, corners: clamp only corner nodes such that the surface

is perpendicular to the fingers)

fix $1 - fix the sheet, i.e. nodes cannot move ($1 = none: do not fix anything, all: fix all

nodes, clamp: fix only the clamp nodes, corners: fix only the corner nodes, Rcorners: fix

only the right corner nodes, Lcorners: fix only the corner nodes)

draw $1 - output drawing command sheetCoords to draw the surface (0 = top layer only,

1 = both layers)

clear - output drawing command sheetCoords with NW = 0 and NL = 0 to clear the

graphics

drawF $1 $2 $3 - output line drawing commands to draw the forces using a color specified

by r g b values on the nodes

drawTF $1 $2 $3 - output line drawing commands to draw only the forces of touched nodes

using a color specified by r g b values (0 0 0 turns drawing off, use clearF to erase existing

forces from the display)

clearF - output line drawing commands to clear all the drawn forces on the nodes

setX0 $1 - set the value of X0 to $1

setY0 $1 - set the value of Y0 to $1

setZ0 $1 - set the value of Z0 to $1

setK $1 - set the value of K to $1

setQ $1 - set the value of Q to $1

setI $1 - set the value of I to $1

setDT $1 - set the value of DT to $1

setFT $1 - set the value of FT to $1

setR0 $1 - set the value of R0 to $1

setIM $1 - set the value of IM to $1

printTime - print time in ms required to compute complete dataset

printTTime - print time in ms required to compute complete dataset and send it out the

outlet

Source code file: sheet.c (ism.c, ssutil.c)
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balloon

Compute surface voxels (left outlet) and drawing commands (right outlet) using a physical

model of a balloon consisting of one layer of masses connected through damped springs and

with internal pressure. The left inlet expects voxels as clamping voxels (set with clamp),

the right inlet can be used to input voxels to “touch” and modify the sheet. Each time a

surface node is touched, the middle outlet outputs that surface node as a voxel.

Object arguments: number of nodes in length direction (NL), number of nodes in width di-

rection (NW), distance between nodes in lenght (X0), distance between nodes in width (Y),

distance between nodes in height (Z0), spring constant (K), damping constant (Q), number

of iterations in settling (I), time interval (DT), force threshold (FT), minimum radius for

a node to be “touched” (R0), maximum touching history length (IM), maximum distance

for finding node to clamp (MD), internal pressure (P) - note that setting these parameters

requires some trial and error to obtain a stable surface

Commands:

reset $1 - setup the balloon as a sphere roughly according to the current voxels received

in the left inlet or, if $1 == 1 and the current number of input voxels is equal to the nuber

of surface voxels, setup the balloon taking the input voxels as surface voxels

clamp $1 - find the clamp nodes nearest to the current input voxels and subsequently set

the clamp nodes to the input voxels each time they are received in the left inlet ($1 = none:

do not clamp anything, topbot: clamp only one top and one bottom node, all: clamp all

nodes)

fix $1 - fix the balloon, i.e. nodes cannot move ($1 = none: do not fix anything, all: fix

all nodes, clamp: fix only the clamp nodes)

draw - output drawing command sheetCoords to draw the surface

clear - output drawing command sheetCoords with NW = 0 and NL = 0 to clear the

graphics

drawF $1 $2 $3 - output line drawing commands to draw the forces using a color specified

by r g b values on the nodes

drawTF $1 $2 $3 - output line drawing commands to draw only the forces of touched nodes

using a color specified by r g b values (0 0 0 turns drawing off, use clearF to erase existing



APPENDIX: MAX/FTS OBJECT REFERENCE 91

forces from the display)

clearF - output line drawing commands to clear all the drawn forces on the nodes

setX0 $1 - set the value of X0 to $1

setY0 $1 - set the value of Y0 to $1

setZ0 $1 - set the value of Z0 to $1

setK $1 - set the value of K to $1

setQ $1 - set the value of Q to $1

setI $1 - set the value of I to $1

setDT $1 - set the value of DT to $1

setFT $1 - set the value of FT to $1

setR0 $1 - set the value of R0 to $1

setIM $1 - set the value of IM to $1

setMD $1 - set the value of MD to $1

setP $1 - set the value of P to $1

printTime - print time in ms required to compute complete dataset

printTTime - print time in ms required to compute complete dataset and send it out the

outlet

Source code file: balloon.c (ism.c, ssutil.c)

Feature Computation

fitEllipsoid

Compute the ellipsoid parameters (outlets output center position, orientation, size param-

eters a1, a2, a3) that best fit a list of positions as input in the left inlet.

Alternate object names: fitE, fe

Commands:

boundByHands - if the input data is a position list representing both hands, scale the size of

the ellipsoid to be within the given positions

printTime - print time in ms required to compute complete parameter set

printTTime - print time in ms required to compute complete parameter set and send it out
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the outlets

Source code file: fe.c (nrutil.c, ssutil.c)

fitSuperquadric

Compute the superquadric parameters (outlets output center position, orientation, size pa-

rameters a1, a2, a3 and shape parameters e1 and e2) that best fit a list of positions as input

in the left inlet.

Alternate object names: fitSuperquad, fitSQ, fSQ, fsq

Commands:

boundByHands - if the input data is a position list representing both hands, scale the size of

the ellipsoid to be roughly within the given positions

printTime - print time in ms required to compute complete parameter set

printTTime - print time in ms required to compute complete parameter set and send it out

the outlets

Source code file: fsq.c (nrutil.c, ssutil.c)

fitPoly

Compute upto 3 polynomial parameters (outlets output the polynomial coefficients) that

best fit a list of positions (only x and y data are used) as input in the left inlet.

Source code file: fpoly.c (nrutil.c, ssutil.c)

fitPlane

Compute the parameters of a plane (outlets output normal vector as a position, Zis and chi

square) that best fit a list of positions as input in the left inlet.

Alternate object names: fp
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Source code file: fp.c (nrutil.c, ssutil.c)

kappa3D

Compute the average curvature (left outlet) computed from a list of voxels representing a

3D surface with width NW as input (left inlet).

Commands:

width $1 - set the NW to $1

Source code file: curv.c (nrutil.c, ssutil.c)

kappa2D

Compute the average curvature (left outlet) computed from a list of positions representing

a 2D curve (left inlet).

Source code file: curv.c (nrutil.c, ssutil.c)

Miscellaneous

unpackcg

Unpack a list message coming from the cyberglove object as separate floats for each sensor.

Alternate object names: upcg

Object arguments: at most 18 character strings (cmc rot, mcp1 flex, pip1 flex, cmc abd,

mcp2 flex, pip2 flex, mcp3 flex, pip3 flex, mcp3 abd, mcp4 flex, pip4 flex, mcp4 abd, mcp5 flex,

pip5 flex, mcp5 abd, palm arch, wrist flex, wrist abd) indicating which sensors should out-

put (and to which outlet).

Source code file: packPH.c (ssutil.c)
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unPack

Unpack a list of hand, voxel, position or orientation data structures as separate data struc-

tures.

Object arguments: number of outlets, data format (“hand”, “voxel”, “position” or “ori-

entation”)

Source code file: packPH.c (ssutil.c)

Pack

Pack data structures received in the inlets into a list of hand, voxel, position or orientation

data structures.

Object arguments: number of inlets, data format (“hand”, “voxel”, “position” or “ori-

entation”)

source code file: packPH.c (ssutil.c)

sin, asin, cos, acos, tan, atan

Compute the geometric functions of the value(s) received in the inlet. When a bang is

received the last computed value(s) are output.

Object arguments: initial output value

Source code file: math.c (ssutil.c)

count

Count the bangs in the left inlet modulo the maximum count (can be set with right most

inlet), increase the count with 1 (default) or the value received in the middle inlet.

Object arguments: maximum count value

Commands: up $1 - set the increment to 1 or $1

down $1 - set the increment to -1 or $1

up $1 - set the increment to 0 or $1
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jump $1 - add $1 to the count modulo the maximum count value

max $1 - set the maximum count value to $1

jump $1 - set the count to $1 modulo the maximum count value

Source code file: count.c (ssutil.c)



Appendix: Video Documentation

A video entitled “Sound Sculpting” was made, documenting and explaining the implemented

system. The contents of the video are as follows:

• Intro - preliminary shots of the system used in performance and motivation of the

research [0:00:14 - 0:01:42].

• Development Environment - Schematic diagram and description of the system

components [0:01:45 - 0:02:39].

• Manipulation - Demonstration of manipulation methods as described in section im-

plemented for the rubber sheet [0:02:43 - 0:04:09] and balloon [0:04:09 - 0:04:47] models.

• Mapping - Demonstration of sonification methods as described in section imple-

mented for the rubber sheet [0:04:50 - 0:07:44] and balloon [0:07:47 - 0:10:02] models.

• Show Time - Performance of music defined by MIDI sequences, using two hands for

manipulation of the rubber sheet [0:10:07 - 0:11:09] and balloon [0:11:12 - 0:11:48]

models.

• Show Time - Performance of music defined by MIDI sequences using left hand only

for manipulation the rubber sheet [0:11:51 - 0:12:36] and balloon [0:12:41 - 0:13:09]

models.
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